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We study the dynamic critical behavior of a Swendsen-Wang-type algorithi~a for 
the Ashkin-Teller model. We find that the Li-Sokal bound on the autocorrela- 
tion time (~ ' in t .  ,'; >/ const x Cn) holds along the self-dual curve of the symmetric 
Ashkin-Teller model, and is almost, but not quite sharp. The ratio rl.t. ~/Cn 
appears to tend to infinity either as a logarithm or as a small power 
(0.05 < p < 0.12). In an appendix we discuss the problem of extracting estimates 
of the exponential autocorrelation time. 
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1. I N T R O D U C T I O N  

Critical slowing down has become one of the main  l imiting factors of the 
state of art of Mon te  Carlo simulations,  t]-4' The autocorre la t ion  time z, 
which roughly measures the Monte  Carlo time between two statistically 
independent  configurat ions,  diverges near  a critical point.  More  precisely, 
for a finite system of l inear size L at criticality, we expect a behavior  r ~ L-- 

for large L: here the power z is a dynamic  critical exponent ,  which charac- 
terizes the dynamic  universal i ty class of the Monte  Carlo algorithm. The 
t radi t ional  local algori thms (such as single-site Metropolis)  have a dynamic  
critical exponent  z > 2. This is a severe critical slowing down, in which the 
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amount of computer work needed to study a lattice of size L grows 
approximately L 2 times faster than the naive geometrical factor L a (d being 
the dimensionality of the lattice). To study the static critical behavior we 
need high-precision data (run lengths >103 r). In practice, it is very 
difficult to obtain high-precision data for large lattices with this kind of 
algorithm. To study the dynamic critical behavior, the situation is even 
worse, as we need much higher statistics (run lengths >104z).  The 
geometrical factor L a is unavoidable for the usual Monte Carlo simula- 
tions, so the elimination (or reduction) of the critical slowing down is the 
only way to make Monte Carlo simulations feasible close to a critical 
point. 

Dramatic progress in this direction was stimulated by the introduction 
of the so-called cluster algorithms. 15~ Instead of sequentially updating the 
whole lattice by single-spin moves, these algorithms employ nonlocal 
moves, such as cluster flips. For the ferromagnetic q-state Potts model, the 
Swendsen-Wang (SW) cluster algorithm tS~ achieves a significant reduction 
in z compared to the local algorithms: one has z between 0 and ~ 1, where 
the exact value depends on the number of Potts states and on the dimen- 
sionality of the lattice. 141 The two-dimensional (2D) Ising model is the most 
favorable case: the critical slowing down becomes extremely weak, with 
estimates from different workers ranging from z=0.35+0.01151 to 
z = 0.25 ___ 0.0116. 7~ to z = 0 x log (i.e., r ~ log L). 18~ Unfortunately, it is very 
hard to distinguish between the power-law and logarithmic scenarios using 
only lattices with L-N< 512J 6"7~ In other cases, the performance of the SW 
algorithm is less impressive (though still quite good): e.g., z=0.55-t-0.03 
for the 2D 3-state Potts model 19~ and z,~ 1 for the 2D 4-state Potts 
model 19~ and for the 4D Ising model. ~~ ~]~ Clearly, we would like to under- 
stand why this algorithm works so well in some cases and not in others; 
we hope in this way to obtain new insights into the dynamics of nonlocal 
Monte Carlo algorithms, with the ultimate aim of devising new and more 
efficient algorithms. 

A single-cluster variant of the SW algorithm was introduced by 
Wolff. I~'-I Instead of updating all the clusters (with a given probability), 
only one cluster is selected and updated. It is not known why the dynamic 
exponents z~c associated to the single-cluster dynamics are very close to 
those of the SW dynamics in some cases (e.g., 2D q = 2, 3 Potts models), 
but not in other cases (e.g., Ising model in dimension d>~ 3). 1~2" ~3~ A priori 
one would expect the two algorithms to belong to different dynamic 
universality classes. 

There is at present no adequate theory for predicting the dynamic 
critical behavior of an SW-type algorithm. However, there is one rigorous 
lower bound on z. In 1989 Li and Soka119) showed that the autocorrelation 
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times of the standard (multi-cluster) SW algorithm for the ferromagnetic 
q-state Potts model are bounded below by a multiple of the specific heat: 

Tint..A", Tim. d', ~'exp ~ c o n s t  x C H (1.1) 

Here ~4 r is the bond density in the SW algorithm, g is the energy, and Cn 
is the specific heat; r~.t and rex p denote the integrated and exponential 
autocorrelation times, respectively/l '4) As a result one has 

Zint, . I", 2int, d ,  Zexp ~ 0~/V (1.2) 

where ~ and v are the standard static critical exponents. Thus, the SW 
algorithm for the q-state Potts model cannot completely eliminate the criti- 
cal slowing down in any model in which the specific heat is divergent at 
criticality (although one might hope to obtain z = 0  x log  in the the 2D 
Ising model, where the specific heat is only logarithmically divergent). 
Now, one would like to know whether the bound (1.2) on critical 
exponents is sharp: that is, does it hold as equality, or only as a strict 
#wquality? In more detail, one would like to know whether the bound (1.1) 
on the autocorrelation times is sharp (riCh bounded), sharp modulo a 
logarithm (riCH ~ log p L), or not sharp (r/CH ~ L p with p > 0). 

Unfortunately, the empirical situation for the 2D Potts models is not 
very clear. For the Ising case, the bound (1.2) would be sharp if (and only 
if) the autocorrelation time grows like a logarithm; this is consistent with 
the data, but not demanded by it. (5-8) For  the 3-state Potts model, the 
bound is apparently not sharp: we have 2 = 0 . 5 5 ~ 0 . 0 3  O) versus 
cc/v=2/5 =0.4J  14) The 4-state Potts model is rather peculiar: the naive fit 
to the data, z = 0.89 +__ 0.05, (9) is smaller than the (exactly known) value of 
~/v = 1. (15) The explanation of this paradox is that the true leading term in 
the specific heat has a multiplicative logarithmic correction, C , ~  
L log-3/2L,(16 181 and indeed the observed exponent ~/v (from a naive 
power-law fit) is 0.75+0.01,19) consistent with the bound (1.2). It is 
reasonable to conjecture that the true behavior of the autocorrelation time 
is likewise of the form r ~ L l o g P L  (with p > - 3 / 2 ) ,  in which case the 
bound (1.1) would be sharp modulo a multiplicative logarithm. 

So we are in a strange situation: the Li-Sokal  bound might be sharp 
(possibly ~odu lo  a logarithm) for the 2D Potts models with q = 2  and 
q = 4, but it is apparently not sharp for q = 3. 2 

-' For lsing models in lattice dimensions d>~3, the bound (1.2) is clearly not sharp. For the 
3D Ising model, estimates of z range from 0.339_-t-0.004 to 0.75+0.01, ~)s'~~176 while 
0c/v~0.17. "1'22) For lsing models in dimension d>~4, we expect z= 1 (possibly modulo a 
logarithm in d= 4), "0. l I) while of course a/v = 0 (or 0 x log 2/3 in d=4). 
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There is yet another way of "interpolating" between the 2-state (Ising) 
and 4-state Potts models: both are special cases of the Ashkin-Teller (AT) 
model, 123~ which has t wo  interacting Ising spins on each lattice site. (For  a 
review of the AT model, see Section 2 below.) The symmetric AT model 
(which is equivalent to the general Z4 clock model) presents a very rich 
phase diagram. In particular, one of the critical curves (namely, the self- 
dual curve) is quite unusual: the critical exponents vary continuously along 
this curve (as a result of a marginal operator),  thus violating the usual 
notion of universality. One point on this critical curve is precisely the 
4-state Potts model at criticality, while another point on this curve 
corresponds to a pair of decoupled Ising models. Thus, new insights on the 
sharpness of the Li-Sokal  bound in the 2-state and 4-state Potts models 
might be obtainable by studying the same question on the self-dual curve 
of the symmetric AT model. 

Wiseman and Domany  ~24) devised the first SW-type algorithm for the 
AT model. Though their method of derivation is rather complicated, the 
algorithm is simple and reduces to the well-known SW algorithms in the 
special cases of the Ising and 4-state Potts models. The same algorithm had 
been independently introduced by Laanait et  aL ~25) in another context: they 
studied a model closely related to the AT model, and they used the same 
SW-type algorithm as a tool for their rigorous proofs. 

In this paper we would like to address the issue of the sharpness of the 
Li-Sokal  bound (1.1)/(1.2) along the self-dual curve of the symmetric AT 
model, and in particular for the 4-state Potts model. We propose two 
variants of the algorithm. The first, which we call the "direct" algorithm, is 
essentially the same as that of Wiseman and Domany124); however, we 
think that our derivation is simpler. (The reader can judge!) The second 
variant, which we call the "embedding" algorithm, is somewhat simpler to 
implement in practice; it is no t  equivalent to the direct algorithm, although 
we expect it to lie in the same dynamic universality class. 

We have studied numerically the multi-cluster ("standard SW") version 
of the embedding algorithm 3 at three points on the AT self-dual curve: the 
4-state Potts model and two additional models (ZF and X2) interpolating 
between the 4-state Potts and Ising models. We have used lattices up to 
L = 5 1 2  (as well as L = I 0 2 4  for the 4-state Potts model), and have 

3 By contrast, Wiseman and Domany t24~ studied tile sh~gle-cluster ("Wolff') version of the 
direct algorithm (in the single-cluster context the direct and embedding algorithms turn out 
to be equivalent). It is important that both the multi-cluster and single-cluster versions be 
studied, as they may well lie in different dynamic universality classes. We concentrate here 
on the multi-cluster version, because it is only for this version of cluster algorithms that the 
Li-Sokal bound ( 1.1 )/(1.2) is known. 
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systematically employed finite-size-scaling techniques to analyze the 
numerical data. We have also reanalyzed the very precise data reported by 
Baillie and Coddington ~7~ for the 2D Ising model on lattices up to L = 512. 
Our results are the following: 

1. The Li-Sokal bound is satisfied on the AT self-dual curve. 
(Indeed, for the direct algorithm we are able to prove this 
rigorously.) 

2. The bound is rather close to being sharp for a generic point on 
the AT self-dual curve. Using power-law fits for the quantity 
tin,, ~ / C z ,  we obtain estimates of z~,t, ~ -  oqv ranging from ~0.05 
to ~0.12. The lower value corresponds to the Ising and X2 cases, 
and the higher value to the 4-state Potts model. 

3. In all cases the data are consistent with a logarithmic growth of 
rin, ,g/C u as A + B l o g L .  For the Ising and the ZF models, a 
logarithmic behavior A log p L  with p~0 .31  also gives a 
reasonable fit. 

4. In all cases, the data are consistent with the boundedness of 
tint. e / C H  as L--* oo only i f  one assumes rather strong corrections 
to scaling, i.e., A + B L  - J  with 1/8 < A < 1/4. Moreover, for the 4- 
state Potts model this scenario implies an implausibly large value 
for the coefficient B (]B[ > I0). In all cases the A + B L  -'~ fit is 
inferior to the A L  p and A + B log L fits. 

5. If we believe (on theoretical grounds) that there should be some 
cont#mity in the behavior of the ratio tint. ~/CI ,  along the self-dual 
curve of the AT model, then the possible scenarios reduce to the 
pure power-law and simple logarithmic A + B log L behaviors. 

Thus, the bound (1.1) on the autocorrelation time is not sharp, but it 
might be sharp modulo a logarithm at some or all points of the AT self- 
dual curve. Further studies on significantly larger lattices will be required 
in order to distinguish convincingly between a logarithmic and a small- 
power-law growth. 

This paper is organized as follows: Section 2 reviews the definition and 
properties of the AT model: phase diagram, critical exponents, etc. In Sec- 
tion 3 we construct our SW-type algorithms for the AT model, and we 
relate them to other SW-type algorithms. In Section 4 we present and 
analyze our numerical results for three selected points on the AT self-dual 
curve. The sharpness of the Li-Sokal bound is also discussed. Finally, 
in Section 5 we summarize our conclusions. In Appendix A we provide 
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a rigorous proof of the Li-Sokal bound for the direct AT algorithm. In 
Appendix B we explain in detail how we performed the fits of the auto- 
correlation functions to extract estimates of the exponential autocorrelation 
times. 

2. THE ASHKIN-TELLER MODEL 

The Ashkin-Teller (AT) modeP -'31 is a generalization of the Ising 
model to a four-state model. To each lattice site x we assign two Ising spins 
a,. = + 1 and r,. = _ I, and they interact through the Hamiltonian 

HAT=--J ~, a,.a.,.--J' s r,.r.,.--K E a.,.rxa.,,r.,. 
(.x-v) ( x y )  (-,iv) 

(2.1) 

where the sums run over nearest-neighbor pairs ( x y ) .  It can be interpreted 
as two Ising models with nearest-neighbor couplings J and J '  and inter- 
acting via a four spin coupling K. Note that the fields a, r, and ar  play 
symmetric roles in this model; we can consider any two of these three as 
the "fundamental fields." 

This model contains as particular cases some other well-known 
systems. The plane K = 0  in the coupling-constant space (J,J' ,K) 
corresponds to a pair of decoupled Ising models, one with coupling J and 
the other with coupling J'. At the other extreme, the limit K ~  + o r  
corresponds to a single Ising model ( a = r )  with coupling J+J' .  Finally, 
the line J = J '  = K is the 4-state Potts model with Jpotts = 4J. 

The family (2.1) of AT Hamiltonians exhibits several symmetries. First 
of all, we can permute freely the spin variables (a, r, at) .  This implies that 
the AT model is mapped onto an essentially equivalent model under any 
permutation of the couplings (J, J ' ,  K). Moreover, if the lattice is bipartite, 
we can flip a or r or both on one of the two sublattices (in other words, 
we choose exactly two of the three variables ~r, r, and ar  and flip these on 
the chosen sublattice). This implies that the AT model is mapped onto an 
essentially equivalent model under the following transformations: 

( J , J ' , K ) ~ ( - J , J ' ,  - K )  (2.2a) 

(J, J', K) --. (J, - J ' ,  - K )  (2.2b) 

(J, J', K) --. ( - J ,  - J ' ,  K) (2.2c) 

These transformations will be useful in Section 3. 
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We are mainly interested in one particular case of the Hamiltonian 
(2.1): the symmetric 4 AT model characterized by J =  J' ,  

HSAT=--J E (a.,.o.,.+r,.r.,.)-K ~ o'.,.r.,.a.,.r.,. 
( xy ) (.vy) 

(2.3) 

This is exactly the general Z 4 clock model 5 

Hclock=--2J ~ Cos(O.,.--O.~,)--K ~ cos (20,.-- 20y) 
( xy ) < xy ) 

(2.4) 

where the dynamical variables take the values 0,. e {0, re/2, rt, 3rc/2}. The 
relation can be easily seen by setting a. , .=x/~cos(O., . -r~/4 ) and r , .=  
x/~ cos( 0,. + re/4). 

The AT model exhibits a rich phase diagram, in both two 126-2s~ and 
three ~'-61 dimensions. Here we concentrate on the two-dimensional square- 
lattice symmetric AT model. Although we do not know how to solve this 
model analytically, we have a fairly good understanding of its phase 
diagram (see Fig. 1). From (2.2c) we see that in the symmetric AT model 
a sublattice flip of a and r corresponds to the change J--,  - J ;  it follows 
that the phase diagram is symmetric under reflection in the J = 0  axis, 
under which ferromagnetic a and r ordering becomes antiferromagnetic 
(AF) and vice versa. For  this reason, we show in Fig. 1 only the half-plane 
J>~0. 

The line K =  0 corresponds to a pair of decoupled Ising models, so 
there are Ising critical points at (J, K ) =  (___�89 log(1 + V/2), 0). Point Dis in 
Fig. 1 represents the one with the plus sign (i.e., the ferromagnetic one). 
The model with J = 0 is again an Ising model, but in the variable at.  There 
are thus additional critical Ising points (J, K ) =  (0, _ �89 +x/~) ) .  The 
one with the plus sign (point Is in Fig. 1) is ferromagnetic, while the one 
with the minus sign (AFIs) is antiferromagnetic. Finally, in the limit 
K--* + az we find Ising transition points at J =  +�88 + v/r2). The one 
with the plus sign is ferromagnetic and corresponds to the point Is' of 
Fig. 1. The other one is antiferromagnetic and is not depicted in Fig. 1. 

The line J =  K corresponds to the 4-state Potts-model subspace (right 
dash-dotted line in Fig. 1). Therefore, there is a ferromagnetic critical point 

4 Baxtert_,7~ calls this model the "isotropic" AT model. We prefer not to use this terminology, 
in order to avoid confusion with spatial isotropy or anisotropy. 

s More precisely, this is the general Z4 clock model on an undirected graph. On a directed 
graph (i.e., one with oriented bonds (xy)),  the interaction term sin(0.,.-0,.)= 
�89 is also allowed. 
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Fig. 1. Phase diagram of the symmetric Ashkin-Teller model on the square lattice. The self- 
dual curve is B - D I s - P - C .  The solid curves represent second-order phase transitions, the 
dash-dotted ones the 4-state Potts-model subspace, and the dotted one the noncritical part 
of the self-dual curve. The Roman numerals designate the different phases of  the model 
(see text). 

at J = K = � 8 8  (point P in Fig. 1). The AF regime ( J = K < 0 )  is more 
subtle. There is no rigorous result concerning the existence or nonexistence 
of a critical point in the AF 4-state Potts model. However, there is a strong 
numerical indication t29) that this model is noncritical, even at zero tem- 
perature: indeed, the second-moment correlation length ~ is < 2  lattice 
spacings at all temperatures, uniformly down to T =  0. 6 The absence of a 
critical point along the line J =  - K  (left dash-dotted line in Fig. 1 ) follows 
immediately using the J ~ - J  invariance. 

The AT model on any planar graph can be mapped into another AT 
model on the dual graph. ~zT" 30, 311 The duality transformation is best viewed 
in terms of the Boltzmann weights 7 

6The critical properties of the antiferromagnetic q-state Ports model depend strongly on 
the lattice structure. For instance, the AF 3-state Ports model has a transition at nonzero 
temperature on the triangular lattice, ~ has a critical point at zero temperature on the 
square lattice, c-'9" 33 35~ and is expected to be noncritical at all temperatures on the hexagonal 
lattice. 

7 The four energy states on a bond (.x3,) are labeled 0, 1, 2, 3 as follows: the high-order bit 
is (1 - a.~tr,.)/2 and the low-order bit is (1 -r,.r~.)/2. 
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(0 0 = eJ + J" + K + JO (2.5a) 

(01 = e J -  J '  - K + J ~  (2.5b) 

co 2 __ e - J +  J ' - -K + Jo (2.5c) 

CO 3 = e - J -  J' +K + JO (2.5d) 

where Jo is an arbitrary constant fixing the zero of energy. The AT model 
with Boltzmann weights (0~0, coL, co_,, co3) is mapped by duality to a new 
AT model with weights (~0, o)l, cb2, c~3) given by s' 9 

~o = �89 + col + co~ + co.~) (2.6a) 

(O1 = 1(O50 + COl - -  (02 - -  (03) ( 2 . 6 b )  

or),_ = �89 - co I + co2 - -  to3) (2.6c) 

~ 3  = �89 - ~ ~  - ( o 2  +co3) (2.6d) 

The symmetric AT model (the one with o), =(02) is clearly mapped under 
duality into another symmetric AT model (i.e., ~ --~_,). Specializing to the 
square lattice, we have that the dual graph is again a square lattice, and the 
self-dual manifold of (2.6) is 

coo=co1 + co2 + co3 (2.7) 

For  the symmetric AT model on the square lattice, the self-duality condi- 
tion (2.7) can be easily written in terms of the coupling constants: 

e -_,K = sinh 2J  (2.8) 

This is represented in Fig. 1 by the curve B - D I s - P - C .  
Furthermore,  the AT model on any planar graph can be mapped onto 

an 8-vertex model on the medial graph. ~3'~ In particular, the AT model on 
the square lattice can be mapped onto a s t a g g e r e d  8-vertex model on the 
square lattice (which has not been exactly solved in general). As a special 
case, the AT model on the  s e l f - d u a l  r n a n ~ o l d  (2.7) maps onto a 
h o m o g e n e o u s  8-vertex model, which is exactly soluble. Furthermore, the 
s y m m e t r i c  self-dual AT model (2.8) maps (after a simple further transfor- 
mation) onto a homogeneous 6-vertex model. In this way, Baxter showed 

s Note that if the original weights co~ are normalized so that Jo = 0, the dual weights o5 i do 
trot necessarily have this normalization. 

o This duality transformation corresponds to the Fourier transform on Z ,  x Z ,  followed by 

huerchange of  a and r (i.e., interchange of col and co,_). 
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that the self-dual curve (2.8) is critical only for K~< 4]-log 3 (solid curve in 
Fig. I ), and is noncritical for K >  ~ log 3 (dotted curve in Fig. 1 ). The criti- 
cal part belongs to the universality classes of the conformal field theories 
with central charge c = 1 (i.e., it can be related to the Gaussian model(361). 
Along this line the critical exponents vary continuously and they are 
known exactly (see below). 

From series expansions, (26~ mean-field theory and approximate real- 
space renormalization-group calculations t-'8~ we know that two critical 
curves emerge from the Ports point P, one going to the Ising critical point 
Is and the other one going to the Ising critical point Is' at K = + oo.]~ The 
critical curves P-Is and P-Is '  map into one another under the duality rela- 
tion (2.6). t27~ Finally, there is another critical curve emerging from the 
point AFIs and pointing toward K---, - ~ .  The exact location of these 
three curves is unknown, as is their universality class. However, most 
people believe that they are Ising-like. In ref. 38 it is argued that these criti- 
cal curves should be given by nonalgebraic functions. 

The four critical curves mentioned above are the borderlines of the 
four phases appearing in this model for J >  0. These phases a re" :  

I. This is the so-called Baxter phase, t261 The spins a and r are inde- 
pendently ferromagnetically ordered. There are thus four 
extremal infinite-volume Gibbs measures according to the signs 
of ( a )  and ( r )  (which may be chosen independently); the sign 
of ( a t )  is then equal to that of ( a ) ( r ) .  

II. This is the paramagnetic phase, in which all three spins a, r, and ar  
are disordered. There is a unique infinite-volume Gibbs measure. 

III. In this phase both the spins a and r are disordered (i.e., 
lim I. ,--  .,.t - ~- (a,-a.,.) = lim I., - .,.t ~ .~- ( r,. r,.) = 0), but their product 
a r  is ferromagnetically ordered (i.e., liml.,._:. I ~ ~(a, .r , .a, .z. , , )>0).  
There are two extremal infinite-volume Gibbs measures, accord- 
ing to the sign of ( a t ) .  

IV. This is the antiferromagnetic analogue of phase III: the spins a 
and r are disordered, while the product air is antiferromagneti- 
cally ordered (i.e., liml.,..,t . . . .  ( - 1 )l"--"l(a,.r.,.a.,,r,,) > 0). There 
are again two extremal infinite-volume Gibbs measures, accord- 
ing to the sign of the sublattice magnetization ( - I  )l.,-t (a. , .rx).  

~0 pfister,37) has proven the existence of two phase transitions (i.e., of the three phases II, llI, 
and I in succesion) along any ray in the quadrant J, K > 0  with slope O<J/K<�89 More 
generally, this applies in the full AT model along any ray in the octant J, J', K > 0  with 
slope O < (J + J ' ) /K  < 1. 

tt We follow the terminology used in Baxter's book. ~27~ 
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This picture has been proven rigorously for low temperature and arbitrary 
spatial dimension, using Pigorov-Sinai theory, t39) In particular, it was 
shown that deep in region I there exists four periodic extremal Gibbs 
measures, and deep in regions III and IV there exist two periodic extremal 

12 Gibbs measures. 
The critical exponents along the self-dual curve can be obtained by 

relating the AT model to the 8-vertex model or to the Gaussian 
model j36, 41.42) We parametrize the critical part of the self-dual curve by 

e4 J __ x/2 + 2 cos It + 1 (2.9a) 

x/2 + 2 cos l t - I 

e 4 K =  1 + 2  coslt (2.9b) 

where 0 ~< I~ ~< 2~/3. This parameter It is related to the coupling constant g 
of the Gaussian model 1431" 13 by It = ~ ( 1 -  g / 4 ) ,  so that 4/3 ~< g~<4. Thus, 
g = 4 / 3  corresponds to the point at K = - o e  (B in Fig. 1), g = 2  is the 
decoupled Ising model, g = 3 is the model considered by Zamolodchikov 
and Fateev, cas~ and g - - 4  is the 4-state Potts model. The critical exponents 
along the self-dual curve are given by 

2 - y  
v = (2.10a) 

3 - 2 y  

2 - 2 y  
(2.10b) 

v 2 - y  

y 7 
- = - ( 2 .  l O c )  
v 4 

y' 7 - 4 y  
(2.10d) 

v 4 - 2 y  

where the parameter y is related to It by 

2lt = 2 _ g  (2.11) y - - - -  
2 

12 Note tile order of adjectives: Pigorov-Sinai theory studies extremal Gibbs measures that 
happen to be periodic; it says nothing about nonperiodic Gibbs measures (e.g., those with 
interfaces) or about periodic Gibbs measures that are extremal only within the restricted 
class of periodic Gibbs measures. For further discussion, see ref. 40, Section B.3.1. 

~3 Our  g corresponds to that of Saleur ~43~ and equals 2n times of the K of the Kadanoff  and 
Brown c36~ and Yang. ~44~ 
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with 0 ~< y~<4/3. Here ~ is the specific heat exponent, while y (resp. y') is 
the susceptibility exponent for a and r (resp. for at). We have chosen to 
specify the ratios (2.10b-2.10d) because these are directly measurable by 
our Monte Carlo methods. For  y > 1 (corresponding to K <  0), the specific 
heat has a cusp singularity (0c<0) rather than a divergence, but both 
susceptibilities remain divergent. 

The region between the decoupled Ising model (Dis) and the critical 
4-state Potts model (P) is the most interesting. It is worth mentioning that 
both the q-state Potts model at criticality and the symmetric AT on the 
self-dual curve can be represented as certain 6-vertex m o d e l s .  127'41'46~ By 
relating these two 6-vertex models, we can map the former model onto the 
latter one, and use q as a parametrization of this subset of the AT self-dual 
curve. For the square lattice, the q-state Potts model at criticality is 
mapped to the point given by (2.9) with 2 cos lt = x//-q. Thus, the case q = 0 
is mapped to K = 0  (i.e., the decoupled Ising model), q = 2  to the model 
considered by Zamolodchikov and Fateev, 145~ and q = 4  to the point 
J =  K =  �88 log 3 (i.e., the 4-state Potts model). 

3. THE ALGORITHM 

3.1. Direct Algorithm 

The idea behind this new algorithm is the same as that of all 
Swendsen-Wang-type algorithms ~47~" 14: w e  decompose the Boltzmann 
weight by introducing new dynamical variables (living on the bonds of the 
lattice), and we then simulate the joint model of old and new variables by 
alternately updating one set of variables conditional on the other set. As we 
have two distinct sets of Ising spins, we expect to introduce two distinct 
sets of auxiliary variables. 

We begin by enumerating the possible energy values which can occur 
on a given bond <xy>. Out of the 16 spin configurations on each bond, 
there are only four different energy values (see Table I). We can order these 
energies in increasing order, but this ordering of course depends on the 
relative values of the coupling constants J, J '  and K. Instead of developing 
a different algorithm for each possible ordering, we can use the symmetries 
(2.2a)-(2.2c) of the general AT Hamiltonian (2.1) and choose 15 an equiv- 
alent general AT model satisfying 

J, J'~> Igl (3.1) 

J4 For  a pedagogical presentation, see ref. 1, Section 6, or ref. 4, Section 4. 
~5 At least if the lattice is bipartite. 
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Table I. Energies for a Bond Joining 
the Spins (O', T)  and (cr', T')  a 
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tr' r r '  Energy  

T T T T & = o  
T T T J, E ~ = 2 ( J ' + K )  
T ), T T E ~ = 2 ( J + K )  
T J, T I E s = 2 ( J + J  ') 

~These  energies are invar ian t  under  the 
t r ans fo rmat ions  a, tr' ~ - a, - tr' and  

r, r ' , - - - , - r , - r ' .  On  each bond  we have 

added  a cons tan t  energy J+ J' + K to {2.1 ), 

in order  to set Eo = 0. 

For  such a model ,  the energies satisfy 

0 = E o ~ < E i ,  E2 <~ Es (3.2) 

In part icular ,  for a given bond,  the lowest energy state is the one with the 
two a spins parallel and the two r spins parallel. We shall hereafter assume 
that  (3.1) holds. 

R e m a r k .  The following a lgor i thm is also valid for a non- 
homogeneous  AT model  on an arb i t ra ry  finite graph,  with Hami l ton ian  

HAT = -- Z J.,.,,a,.ay-- Z J':,r.,.r.,.- Z K,._,,~,.r,.ayr,, (3.3) 
<_x:v > <xv> <xy> 

satisfying 

-. ' .  >- IK.,-,. I (3.4) J,-,., J.,-v *- . 

for every bond  ( x y ) .  It suffices to make  the obvious  nota t ional  alterations. 

The  Bol tzmann  weight associated with the bond  ( x y )  is equal  to 

Wbond(O'x ,  O'y, Tx,  Z'y) 

= e-2~g+g'l + e-2g'[e-'-K-- e-2g] a . . . . .  .,. 

+e-2g[e-2K--e  -'-a'] a ..... ,. 

+ [ I  - - e - 2 ~ ' l ' + K ) - - e - i { J + K l - k - e  -2{a+s'l] 3,:, ,.. a . . . .  (3.5) 
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Let us now introduce the auxiliary variables m.,.y, n,..,. = 0, 1 associated with 
the spins er, 3 respectively, and define the joint-model Boltzmann weight for 
the bond < x y )  to be 

WJ. oinl t,,- o-v, 3,., 3v; mxr, I1,~) bond~ ~ x  ' . - . . . 

- - 2 { J +  J ' ) .~  = e  o, , ,~.o6, , . , , . .o+e-2J'[e-2K--e-2J]6, , ,  ~ a ..... td i .... o 
. ,  i �9 .', .7, 

+ e - 2 S [ e  - 2 ~ - e - - ' ' ' ]  6 . . . .  ,am,,.06,,,,..I 

+ [1 - e  -2~s'+ m _  e-2~s+ m +  e-'-~s+s'~] 6 ...... 6 .....  6 ....... 16,,,,.. I 

(3.6) 

] fwe  sum (3.6) over m,.,. and n,..,., we obtain (3.5), as desired. The complete 
joint probability is then 

1 
= Wbo,dta.,., ~.,,, r.,., 3,.; m.,..,., n.,..,.) (3.7) w l ~ 1 7 6  3 }  ; { ' / , 1 1 } )  Z H  fzlzjoin, ,  

.x-y 

where Z is the partit ion function of both the joint model and the original 
model: 

Z =  2 2 ] 7  m ! ~  / o" . b o n d '  -" '  0"3" 3 x '  3 v ;  n? , . , . ,  l'l.,.y) (3.8a) 
o ' , r =  + 1  r e . n = 0 . 1  <xT; '  

= Z 1-[ Wbo,,d(Cr., -, ~.,., 3,., 3:.) (3.8b) 
,7, r = _+ { ( . v y )  

Our SW-type algorithm consists in simulating the joint  probability 
distribution (3.7) by alternately applying the conditional distributions on 
{cr, 3} and on {m, n}. These two steps can be read off immediately from 
(3.6)/(3.7); in detail, they are the following: 

Step 1. Update ol '{m, n} given {~r, 3}. Conditional on the {or, 3} con- 
figuration, the bond variables {m, n} are given independently for each bond. 
For  a bond <xy)  with spins ~,., ~7,., rx, r.,,, we obtain the new bond vari- 
ables m,.:, and n.,.:. (independently of the old values) by the following rules: 

( la)  If tT,.=~.,, and 3~=3,. ,  then we choose (m ........ n.,.:,) with the 
following probabilities 

(m.,..,,, n , y ) =  (1, 1) 

(rn., ,  n.(,,)= (1, O) 

(m.,:,,, n,:,.) = (0 ,  1 ) 

( m  ....... n,:,,) = (0 ,  0 )  

with p~ = 1 --e-2{J'+Kl--e-Z{J+Kl-.Fe-21J+J') 

with p2=e-2"r[e-2K--e -2a] 

with p ~ = e - ' - S [ e - 2 U - e  -'- ' '] 

with P4=e-2~J+'r~= I - p l  - P 2 - P 3  
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(lb) If a,.=a.,, and r , .= -r.,,, then the probabilities are 

(rex:,, n,:,,) = (1, O) with q l = l - e  -2~J+m 

(m ~:,, n,..,,) = (0, O) with q 2 = e - 2 ~ s + m = l - q t  

(lc) I f a x =  - %  and r,.=r.,., the probabilities are 

(m,_,,,n.,w)=(O, 1) with rl = 1 - e  --'ls'+m 

(m.,.,,, n,:,.) = (0, O) with r 2 = e - 2 ( J ' + K ) = l - - r l  

( ld) If a_ , .=-%,  and r , .=-r .~. ,  we choose (m,:,., n.,:~.)=(0, 0) with 
probability 1. 

All these choices are made independently for each bond ( x y ) .  

S t e p  2. Update of  {~, r} given {re, n}. Given the bond configura- 
tion {m, n}, we build all the connected clusters of ~ spins (resp. r spins) 
joined by bonds with m,.,, = 1 (resp. n,..,. = 1 ). Within each cluster, the spin 
values are required to be equal, but this common value may be either + 1 
or - 1 .  The spin value for each cluster is chosen randomly, independently 
of the old value and of the choices made for the other clusters. 

One iteration of the direct algorithm consists of an application of step 
1 followed by an application of step 2. 

Remarks. 1. Wiseman and Domany ~24~ introduced essentially this 
same decomposition of the Boltzmann weight, although their derivation is 
in our opinion more complicated. They then studied numerically the single- 
cluster ("Wolff") version of this algorithm. Here we study the many-cluster 
("Swendsen-Wang") version. 

2. This direct SW-type algorithm satisfies the Li-Sokal bound 
( 1.1 )/(1.2). The proof is a straightforward generalization of the one given in 
ref. 9 for the Ports case; we present it in Appendix A. 

3. We can generalize our SW-type algorithm to a "generalized 
Ashkin-Teller model" consisting of a q-state Potts variable a and an r-state 
Potts variable r interacting through the Hamiltonian 

HGA-r = - 2 ( J - K )  ~ 6,~,.,,,.--2(J'--K) ~ 6 ..... .,. 
< x.v ) < x.v > 

- 4 K  ~ c5~,.~ ~ ...... 
<_x-v> 

(3.9) 

It is clear that from this Hamiltonian we obtain again the joint probability 
distribution (3.6). This model is considered in ref. 25 when J '  =K.  
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3.2. The Embedding Algor i thm 

The algorithm presented in the preceding subsection is perfectly legal, 
but it is somewhat complicated to write the computer code for its step 1 in 
an efficient way. In this section we introduce a variant algorithm in which 
we deal with only one kind of spin (a or r) at a time. 

Consider the Boltzmann weight of a given bond ( x y ) ,  conditional on 
the {r} configuration (i.e., the r spins are kept fixed): it is 

Wbond(O'x, O'y, r.x , ~ ' ) , ) = e - - ' l a + m ~ ' ~ +  [1 - -e  -2(J+/<r'r-')] ~a,.,o3 (3.10) 

We can simulate this system of cr spins using a standard SW algorithm. The 
effective nearest-neighbor coupling 

, . .= +/~r,.r,, (3.11) 

is no longer translation-invariant, but this does not matter. The key point 
is that the effective coupling is always ferromagnetic, due to the condition 
(3.1). An exactly analogous argument applies to the {r} spins when the 
{a} spins are held fixed. 

The embedding algorithm for the AT model has therefore two parts: 

Step 1. Update o f  {a} spins. Given the {r} configuration (which 
we hold fixed), we perform a standard SW iteration on the a spins. 
The probability p.,..,, arising in the SW algorithm takes the value p.,:,, = 
I - exp[ - 2 ( J  + Kr.,.r.,,)]. 

Step 2. Update of  {co} spins. Given the {cr} configuration (which 
we hold fixed), we perform a standard SW iteration on the r spins. 
The probability p.,..,, arising in the SW algorithm takes the value p.,:,, = 
1 - exp[ - 2 ( J '  + Ka.,.a.,,) ]. 

One iteration of the embedding algorithm consists, by definition, in a 
single application of step 1 followed by a single application of step 2. 

Wiseman and Domany 124~ also constructed an embedding version of 
their single-cluster algorithm. Furthermore, they showed that, in the single- 
cluster context, the direct and embedding algorithms define the same 
dynamics~6; only the computer implementation is different. However, this 
equivalence does not hold for our many cluster algorithm. In the direct 
algorithm we have independent clusters of a spins and r spins that could 
be flipped simultaneously. In the embedding algorithm we have at each 
step only one of the two types of clusters. 

~6 More precisely, this equivalence holds when the embedding algorighm is defined by making 
a random choice of step 1 or step 2 at each iteration. 
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The embedding algorithm, due to its simplicity, is the one used in our 
MC study of the AT model (see Section 4). We expect that it lies in the 
same dynamic universality class as the direct algorithm, on the grounds 
that one SW hit of {a} followed by one SW hit of {r} should be roughly 
equivalent to one joint hit of {a, r}. Of course, we do not expect the 
autocorrelation times for the two algorithms to be equal, but we do expect 
them to be asymptotically proportional as the critical point is approached. 
A similar behavior is found in comparing the direct and XY-embedding 
versions of the multigrid Monte Carlo (MGMC) algorithm for the 4-vector 
model/48, 49) 

Remark. This algorithm is closely related to an embedding 
algorithm for general Z,, clock models on an undirected graph. We can 
consider Z,, as a subgroup of U( 1 ) and then apply Wolff's embedding algo- 
rithm for the XY model. 1~-''5~ Let us specify the reflection plane by a 
vector ~= (cos ~b, sin ~b) in this plane; clearly ~ is specified only modulo ft. 
If n is odd, there is a unique type of reflection: the reflection plane passes 
through one spin value and one point bisecting two spin values, and it 
corresponds to ~b--2rck/n with k either integer or half-integer. However, if 
n is even, there are two types of reflections: the reflection plane can either 
pass through two spin values or else through two bisector values; these 
correspond to ~b = 2rtk/n with k integer or half-integer, respectively. Thus, 
for the 4-state clock model we have two reflections of the first type and two 
of the second type: with the identifications a.,.=x/~cos(O.,.-rc/4) and 
r.,. = v/2 cos(O.,.+ rt/4) [taking 0,. �9 {0, zr/2, ~, 3~/2} ], these reflections are 

and 

= 0 :  (a, r ) - - , ( r ,  a)  

~ = ~ / 2 :  (a, r ) - - , ( - r ,  - a )  

= - ~ / 4 :  (or, r) ~ ( - a ,  r) 

= ~/4: (~r, r) --, (a, - r)  

(3.12) 

(3.13) 

respectively. The last two moves (i.e., those of bisector type) are precisely 
the moves allowed in our algorithm. The first two moves correspond to the 
interchange of cr and r, either without or with a simultaneous flip of both 
spins. 

So let us fix ~b to be one of the four values listed above, and let us 
embed Ising spins e.,. = + 1 into the 4-state clock model via the Wolff 
update 

0.,. --* ~b + e,.(O,. -- q~) (3.14) 

822/85/3-4-2 
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Plugging this into the clock-model Hamiltonian (2.4), we obtain an 
induced Ising system in the {e} variables with interaction 

J~:,~=2 Isin(0.,.-~b) sin(0:,-~b)l [J+2Kcos(O_,.-~) c o s ( 0 y - ~ ) ]  (3.15) 

This Ising system can then be simulated by means of an SW algorithm. The 
cases ~ = T- re/4 correspond to steps 1 and 2 of our embedding algorithm. 
On the other hand, the case q~ = 0 is characterized by an effective coupling 

J.~i = 2J6 . . . .  .+. fi~,... _ +, (3.16) 

This means that only bonds joining sites with a,. :/= r,. and a.,. ~ r.,. can be 
"activated" [with probability p = 1 - e x p (  - 4 J ) ] ;  the move (a, r) ---, (r, a) 
is then equivalent to flipping both a and r within each such cluster. An 
analogous conclusion applies to the case q~ = re/2 here only bonds joining 
sites with a.,. = r_,. and a.,. = ry can be "activated." Thus, the moves with 
4 = 0 ,  re/2 are in a sense merely combinations of the moves ~b= i n / 4  
already contained in our AT embedding algorithm. For  this reason, we 
think that the introduction of the moves ~b =0 ,  n/2 into our embedding 
algorithm will not further reduce the dynamic critical exponent. Indeed, the 
algorithm with on/y the q} = O, n/2 moves is not even ergodic: at each site 
the product a.,.r.,, is conserved. 

3.3. Particular Cases 

As pointed out in Section,2, the AT model reduces to two decoupled 
Ising models at K =  0 and to the 4-state Potts model at J =  J ' =  K. It is 
worth mentioning that the above-discussed algorithms reduce to the well- 
known SW algorithms for those particular cases. 

When K =  0, it is easy to verify that (3.6) reduces to 

bl'zjoint , 
Yg bond~O'x, O'y, r.v , Ty; D'/.vv, Ha.y ) 

--2J --2J = [ e  ~,,,+.,.o+(1 --e  ) ~ ,  ~, (5,,,,.,. t] 

- -  2 J '  x [ e  ~,,.,..,, 0 + ( 1 - -  e - 2 J ' )  ~ . . . . .  ., ~,,~y. i ] (3.17) 

This means that the Boltzmann weight for any bond is just the product of 
the weights of the two independent Ising models. As a result, our direct AT 
algorithm reduces to two independent SW algorithms on the systems 
{a, m} and {r, n}. Of course, the same holds for the embedding algorithm, 
as the a spins are decoupled from the r spins. 
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When J = J '  =K~>0,  (3.6) can be written as 

wJu~ •:,, r_,., ~,,; m.,.,,, n,.,,) 

=e-4J6m.,:,..O(~,,,.,..O+[1--e-4J]6,r~.,r,.6r~..r,.6,,,~.~..16n.,.,..l (3.18) 

which is exactly the standard SW decomposition for the Boltzmann weight 
of the 4-state ferromagnetic Potts model. As a result, our direct AT algo- 
rithm on the line J = J ' =  K>~ 0 reduces to the standard SW algorithm for 
the 4-state ferromagnetic Potts model. However, the embedding algorithm 
does not reduce to the standard SW algorithm in this case. 

4. N U M E R I C A L  R E S U L T S  

4.1. A u t o c o r r e l a t i o n  Funct ions  and A u t o c o r r e l a t i o n  T imes 

We are interested in the dynamic behavior of the embedding SW algo- 
rithm described in Section 3.2. Thus, we need to study the autocorrelation 
functions and autocorrelation times for each measured observable. Given 
an observable (~o, we define the corresponding unnormalized autocorrela- 
tion function as 

Cee( t )  = (C~.C,.+,) - ( ~ ) z  (4.1) 

where all the expectation values ( . )  are taken in equilibrium and t is the 
"time" in units of MC steps.17 The associated normalized autocorrelation 
function is 

Pe e (t) = Ce e ( t) /Ce e (0) (4.2) 

The integrated autocorrelation time for the observable C is defined as 

~, . , . ,= �89  Y. p , , ( t )  

= � 8 9  ~ Pee( t )  
t = l  

(4.3) 

Here the factor 1/2 is purely a matter of convention [if  the normalized 
autocorrelation function is a pure exponential, P e e ( t ) ~  e-I'1/~ with r >> 1, 

t7 One "Monte Carlo step" consists in one application of "step I" of Section 3.2 followed by 
one application of "step 2." 
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then this definition implies that rim. e ~ r ] .  Finally, the exponential 
autocorrelation time for the observable ~0 is defined as 

Itl 
r~.~p, e = lim sup (4.4) 

, - ~  - l o g l p e e ( t ) l  

and the exponential autocorrelation time ("slowest mode") for the system 
as a whole is defined as 

r~xp = sup rer, p ' e (4.5) 
tr 

Note that Tex p = Texp, e whenever the observable C o is not orthogonal to the 
slowest mode of the system. 

The integrated autocorrelation time controls the statistical error in 
Monte Carlo estimates of the mean ( C ) .  In particular, given a sequence 
of n Monte Carlo measurements of the observable 60---call them 
{ ~0 t ..... C~,,}--the sample mean 

has a variance 

C?-= 1 ~ C ~ (4.6) 
17 t = l  

v a r ( ( )  = 1 ,  f i  C e e ( r - s )  
/1- 

r , . ~ ' ~  [ 

l 
= -  ~, 1 -  Ce 

11 t = - - ( n - - l )  

1 
~ - 2 t i n t ,  e C e e ( O )  for 

11 

(4.7a) 

e(t) (4.7b) 

n >> ri,,. e (4.7c) 

This means that the variance is a factor 2r~,t, e larger than it would be if 
the measurements were uncorrelated. It is therefore, very important  to 
estimate the autocorrelation times for all the interesting observables in 
order to ensure a correct determination of the statistical errors. The 
integrated autocorrelation time rim . e can be estimated using standard pro- 
cedures of statistical time-series analysis. ~52s3~ In this way, we obtain 
reliable error bars for both Tint, e and (C c).  We have used a self-consistent 
truncation window of width 6tint. e (ref. 54, Appendix C). This window 
width is sufficient whenever the autocorrelation function Pee(t) decays 
roughly exponentially, a behavior that we will confirm explicitly here (see 
Section 4.5 ). 

The exponential autocorrelation times rexp, e are extracted by fitting the 
autocorrelation function poe(t), for t large enough, to a pure exponential 
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A exp(-t/rexp, e,). The statistical details of  this fit are described in 
Appendix  B. However ,  it should be emphasized that  it is in principle 
impossible to obta in  a statistically valid est imate of  rCxp. e as there could 
always be a very slowly decaying c o m p o n e n t  of  Pee(t) with arbi trar i ly 
small ampl i tude  (which would thus be invisible under  the statistical noise). 
Thus,  our  est imates of  r~xp, e are really lower bonds. They  can be taken as 
est imates of  r~.~p, e only if one assumes that  Pee(t) is roughly an exponen-  
tial, with no very slowly decaying components .  

4.2 .  O b s e r v a b l e s  t o  B e  M e a s u r e d  

Let us begin by defining some basic observables.  The  observables  of  
interest involving only the a spins are 

,.,//Z,,. - Y '  a.,. ( 4 .8 )  
x 

d~- ~ axa,, (4.9) 
<xv> [ : 2; 

i f _ /  Za.,e_~,,-,/L + y'a.,.e2,.,-_,/c (4.10) 
A" N 

where L is the linear size of  the system (we always use periodic bounda ry  
condi t ions)  and (x~, xz) are the Car tes ian coordinates  of  the point  x. The  

Table II. Points of the Self-Dual Curve of the Summetric AT Model 
Where Our MC Simulations Were Performed" 

Point J = J '  K y 

1 4-state Potts model log 3 ~ 0.274653 ~ log 3 ~ 0.274653 0 

ZF 1 log (2 + ~2)'/-" + 1 ~ log( I + v/~2 ) ~ 0.220343 ~ (2 + x/~) 1'2- 1 ~ 0.302923 1 

X2 - ~ l o g (  5 )_~-,,/~2 ~0.344132 11og6!5-3"/2)~01479~0 - 0 . 7 3 5 5 7 9 1 1 - 6 x / ' 2  " - 

1 
lsing model _~ log( 1 + v/22) ~ 0.440687 0 1 

"The parameter y is defined in (2.9)/(2.11). We also include the values corresponding to the 
Ising model (Dis): the dynamic data corresponding to this point have been taken from 
Baillie and Coddington. ~7~ 
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last observable can be also seen as the square of the Fourier transform of 
a at the smallest allowed nonzero momenta  [i.e., (+_2n/L, O) and 
(0, +_2n/L) for the square lattice]; it is normalized to be comparable to its 
zero-momentum analogue .//g~. We define analogous observables for the r 
spins and for the composite operator  at.  

We have run the MC algorithm on three different points of the self- 
dual curve of the symmetric AT model (see Table II). One is the 4-state 
Potts model at criticality, where the three variables (a, r, az) are related by 
symmetry. But for the rest of the points of the self-dual curve, only a and 
r are related by symmetry. Since we wish to exploit the symmetries of the 
model in our data analysis, our choice of observables to measure will 
depend on which model we are studying. 

4.2.1. Observables  for  the  Cr i t ical  F o u r - S t a t e  Pot ts  Mode l .  
For AT models on the 4-state Potts line J =  J ' =  K, the natural choice of 
the observables are those having the symmetries of the original Potts 
model, namely those invariant under permutations of (a, r, at) .  We have 
measured the expectations and autocorrelation times for the following 
observables: 

~(..,# ~- + .-,/,'/r + ~,~ r,~) 

~(~. + ~ + ~ )  

(4.11) 

(4.12) 

(4.13) 

These observables coincide with the usual ones for the 4-state Potts model 
up to some multiplicative constants. We can then define the magnetic 
susceptibility 

1 
X= ~ (./r (4.14) 

the total energy Is 

the specific heat 

E = ~ v ( g ~  (4.15) 

c .  = ~ v ( ( ~ 2  ) - (~-) :) (4.16) 

Is We have normalized the energy such that -1 ~<E,N<I (i.e., E is the energy density per 
bond), and the same normalization has been taken for the specific heat. However, in the 
literature it is more common to find the. energy and specific heat normalized per site, i.e., 
with a factor I/V rather than our I/(2V). 
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and the second-moment correlation length 

where F is defined as 

( x / F -  1 )1/,_ 
(4.17) 

2 sin(n/L) 

F=• V ( J  ~ )  (4.18) 

In all these formulas, V is the number of lattice sites (i.e., V= L-') and 2V 
is the number of bonds. This definition of the correlation length is 
not equal to the exponential correlation length (=  1/mass gap), but it is 
expected that both correlation lengths scale in the same way as we 
approach the critical point. 

Remark.  To compute the error bar of the specific heat CH we have 
first computed the mean energy ( 6 )  and then considered the observable 
~ = (or_ (~,))2 using the procedures described in this section. 

4.2.2.  Observab les  for  a Genera l  Po in t  on t h e  S e l f - D u a l  
Curve.  A generic point on the self-dual curve does not enjoy the 4-state 
Potts symmetry, but it does of course enjoy the a a ~ r symmetry charac- 
teristic of all symmetric AT models. The natural choice is thus to define 
two sets of observables: one for the a and r variables, and another for the 
composite operator at. The first set is given by 

, , 2 j /~) (4.19) .Jig L - ~ ( .,kl . + 

g,o --  �89  + g , )  (4.20) 

- ~  = �89 + 4 )  (4.21) 

and the second one by J/]~, ,~ ,  and ~ .  We then define 

1 ~ 9 ~  1 ~ (Z~,/F., - -  1 )1/2 
Zo~=-~(J//L), E,o=_,  (~,o), F , o = ~ ( ~ o ) ,  r 2sin(n/L) 

(4.22) 

and 

1 1 , x ~ /  , ~ r -  
Z , , ~ = - ~ ( J / ; ~ ) ,  E ~ = , . ,  ( ~ ) '  F ~ = V  (~ '~ ) '  ~ -  2sin(n/L) 

(4.23) 



Salas and Sokal 320 

Finally, we define a specific, heat matrix ~H 

1 var(~,o) ~+'=2-P(cov(~,, cot) cov(~o,, ~)'~ var(~,,~) J (4.24) 

with eigenvalues CH. rain and Cz~ . . . .  and corresponding eigenvectors 

(') t f m i  n = (4.25a) 
( l  

t~ . . . .  =(alx}\_ / (4.25b) 

where a is some real number. These two eigenvalues have distinct critical 
exponents: Ctt. m,x corresponds to a relevant operator (with exponent 

> 0), while CH. m~n is expected to correspond to a marginal operator  (with 
exponent 0). The marginal operator  arises from the existence of the self- 
dual curve (2.8), along which the critical exponents vary continuously. In 
particular, oll the self-dual curve (2.8), we expect that 

a = - �89 coth 2J  (4.26) 

(in the infinite-volume limit), as can easily be computed from the tangent 
vector to (2.8), taking into account the normalization ~ =2~oj + K , ~ .  

4.3. S u m m a r y  of Our S imula t ions  

We have run our MC program for the embedding algorithm (Section 
3.2) at three different points of the self-dual curve (2.8): see Table II for 
details. One of the points is the critical point of the 4-state Potts model 
(i.e., J =  J ' =  K =  ~ log 3). The second point is the image of the q = 2 Potts 
model via the transformation discussed at the end of Section 2 [i.e., 
(2.9a)-(2.9b) with 2 c o s p = x / 2 ] :  this point will be denoted as ZF and 
corresponds to the model studied by Zamolodchikov and Fateev. ~51 The 
third point is one of the ones studied in ref. 24 and will be denoted as in 
that paper  (X2); it corresponds to a Potts model with q~0.651287. We 
also notice that the point X3 of ref. 24 is rather close to our choice ZF. 
Finally, we have used the extensive MC data of Baillie and Cod- 
dington~7~. ~9 for the critical Ising model (which corresponds to the point 

~9 We thank Paul Coddington for communicating to us the numerical values of these data, 
which formed the basis for the graphs in ref. 7. For the lattices L ~< 128 these data coincide 
with the data reported by Baillie and Cod.dington in an earlier paper, ~6~ while for L = 256, 
512 they improve the statistics somewhat. 
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Table III. Data for 2D Ising Model"  

L Z Cn (exact) zint ,  o~ 

8 41.392 + 0.008 1.145559240 2.589 + 0.005 

16 139.58 __ 0.04 1.498704959 3.258 + 0.005 
32 470.12 _____ 0.20 1.846767590 4.016 __ 0.005 

50 1025.9 ___+ 0.4 2.069384825 4.585 + 0.005 

64 1581.4 + 0.5 2.192211393 4.899 __ 0.010 
100 3453.7 + 1.4 2.413876309 5.510 __ 0.017 

128 5319.2 + 2.4 2.536331335 5.874 __ 0.016 
256 17900 + 7.0 2.879786255 6.928 + 0.030 

512 60185 + 28.0 3.222907954 8.144 ___+ 0.055 

The susceptibility g and the integrated autocorrelation time r~m. e are taken from ref. 7. The 

value of the specific heat C,q is obtained from the exact formula of Ferdinand and Fisher. ~55~ 

Dis of the AT model). In Table III we include the static and dynamic data 
corresponding to this point. 

For each of these points we ran the MC program at different lattice 
sizes ranging from L = 16 to L = 1024 for the 4-state Potts model and from 
L =  16 to L = 5 1 2  for the other two points. In all cases we started the 
simulations with a random configuration and discarded the first 105 itera- 
tions to allow the system to reach thermodynamic equilibrium. This dis- 
card interval is sufficient for equilibration: in the worst case (i.e., the 4-state 
Potts model with L =  1024), it is roughly equal to 190"rint, er (or about 
160r~xp, e). The number of measurements ranges between 8 x  105 and 
4.4x106. In all cases except the L = I 0 2 4  Potts, the number of 
measurements is greater than 104rinc e. This is sufficient to obtain good 
estimates (errors ~ 1 - 4 % )  for the autocorrelation times, and excellent 
estimates (errors ~ 0 . 1 - 1 % )  for the static observables. On the other hand, 
for the 4-state Potts model with L =  1024 we were able to achieve only 
~ 1500tint. er- The error bars on this point are therefore rather large. 

To test the program we compared the MC results to the exact solution 
for small lattices (3 x 3 and 4 x4). We performed this test over a wide 
range of couplings (J, J ' ,  K), including both high- and low-temperature 
regions as well as the critical region. We also compared the results for 
larger lattices to previous MC computations ~9~ for the critical 4-state Potts 
model. In all cases the agreement was good. 

The CPU time required by our program is approximately lOL2psec/ 
iteration on an IBM RS-6000/370. The total CPU time used in this project 
was approximately 1.2 years on this same machine. 

The estimates for the observables discussed in Section 4.2 are shown 
in Tables IV-VIII. In all of them, the quoted errors correspond to one 
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Table IV. 
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Results of the MC Simulations at the Critical Point of the 
4-State  Potts Model" 

L MCS Z Cn ,.;7 r~,,.., r~,,..H: 

16 0.9 141.41 +__0.29 5 .027_+0.027 15.758_+0.056 12.86_+0.24 12.77_+0.24 
32 1.9 474.23_+0.94 8 .341_+0.040 31.681_+0.100 23.13_+0.40 22.75_+0.39 
64 4.4 1589.67 _+ 2.84 13.937 _+ 0.060 63.827 _+ 0.172 41.42 _+ 0.62 40.34 _+ 0.60 

128 2.9 5316.35_+ 16.49 23.576_+0.170 127.974_+0.575 78.79_+2.01 76.19_+ 1.92 
256 2.9 17771.34+__74.91 39.876+0.388 256.175_+1.523 142.54-+4.90 136.57_+4.59 
512 2.9 59876.54_+334.67 67.938_+0.934 519.102_+4.078 252.83_+11.57 241.40_+10.79 

1024 0.8 196872.43-+3137.60 120.270_+4.183 1020.767_+21.680 534.44_+67.68 505.27_+62.22 

" For each lattice size (L) we include time number  of  performed measurements  MCS in units 
of 106, the susceptibility 2', the specific heat CH, the second-moment  correlation length ~, 
and the integrated autocorrelation times for the energy *int. a" and the susceptibility rim . .a". 
The quoted errors correspond to one s tandard deviation (i.e., confidence level ~ 6 8 %  ). 

Table V. Static Data from the Runs for the Point ZF" 

L MCS Z,,, Z~, ~,,,, d,~ Ctt ...... Cjt ...... 

16 0.9 146.53+0.24 1 2 3 . 8 3 + 0 . 2 5  16.252+0,049 13.751 __+0.039 9.902+0.043 0.4366+0.0014 

32 0.9 494.14+1.10 395.77__+1.08 32.374_+0.119 27.289_+0.094 15.922__+0.089 0.4549+0.0025 

64 0.9 1668.42-+4.80 1264.13-+4.47 64.818_+0.296 54.410_+0.229 24.949_+0.181 0.4645+0.0044 

128 0.9 5665.88+___21.00 4067.21+ 18.60 131.094-+0.749 109.699_+0.577 39.068_+0.362 0.47004-0.0050 

256 0.9 18925.334-94.12 12814.294-78.80 259.0664-1.930 216.909_+1.488 62.652+__0.749 0.4743_+0.0086 

512 1.9 64118.12+_274.65 41094.674-216.67 521.9014-3.349 436.8904-2.548 98.9664-1.034 0.4769+0.0085 

" For each lattice size L, we report the number  of measurenaents MCS in units of  l0 n, the 
susceptibilities X,, and ;(oT, the second-moment  correlation lengths (, ,  and ~. , ,  and the 
maximum and minimum eigenvalues C,,r ,,,a~ and CH. ,hi, respectively, of the specific-heat 
matrix C'H. 

Table VI. Autocorrelat ion Times for the Runs Performed at the Point ZF" 

L MCS Z'int.,,;-,," ri,,t.~ ~ z'im .#2 rim .1,2 

16 0.9 9.43+0.15 8.60+0.13 9.23+0.15 8.28--+0.12 
32 0.9 16.00+0.33 15.054-0.30 15.39-+0.31 14.08-+0.27 
64 0.9 26.40 ----- 0.70 25.32 -+ 0.66 24.98 -+ 0.65 22.92 -+ 0.57 

128 0.9 44.97 + 1.56 43.74 -+ 1.50 41.25 -+ 1.37 38.18 "1- 1.22 
256 0.9 76.35 + 3.45 75.19 -+ 3.37 70.28 -+ 3.05 65.74 -+ 2.76 
512 1.9 119.02-+4.62 117.83-+4.55 110.03-+4.11 102.53--+3.69 

" For each lattice size L, we show the number  of measurements  MCS in units of 106, the 
integrated autocorrelation times for the energies rim . e.o and Z'int. 8~,, and the integrated 
autocorrelation times for the susceptibilities rim ̀ .# 2 and l'int..t/~- 
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Table VII. The Static Data from the Runs for the Point X2 

323 

L MCS Z,,, Z , ,  5,,., g,o, Ct.,. m,,  C.,, . . . .  

16 0.9 145.93+0.18 104.31_+0.19 15.815+0.036 11.958_+0.027 8.793_+0.030 0.27326_+0.00088 
32 0.9 493.30+0.74 319.01 _+0.72 31.482_+0.081 23.779_+0.059 12.602_+0.052 0.28820_+0.00090 

64 0.9 1660.56+3.04 970.81_+2.63 62.797_+0.187 47.488_+0.134 17.783_+0.090 0.29708_+0.00140 

128 0.9 5695.77_+12.41 2958.76_+9.63 125.552_+0.437 94.974_+0.312 24.808_+0.152 0.30122_+0.00250 
256 0.9 18772.61_+48.29 8951.11_+33.94 249.624_+0.990 188.436_+0.696 33.765-t-0.248 0.30392_+0.00316 

512 1.9 63352.87_+189.64 27341.35_+120.27 501.468_+2.282 378.482_+1.609 45.485_+0.399 0.30652_+0.00462 

Table VIII. Autocorrelat ion Times for the Runs Performed at the Point X2 

L M C S  rint.,r rim . ~,, rim . .#-" tint. j / "  

16 0.9 6 .405+0 .085  5 .965+0 .076  6 .172+0.081  5 .606+0 .069  
32 0.9 9 .326+0 .148  8 .815+0 .136  8.706_____0.134 7 .978+0 .117  

64 0.9 13.686 +__ 0.264 12.169 + 0.249 12.372 + 0.227 11.370 _____ 0.200 

128 0.9 20.338 __ 0.476 19.719 __+ 0.454 ] 7.798 + 0.389 16.232 __ 0.340 
256 0.9 27 .775+0 .758  27 .196+0 .735  23 .777+0.601  21 .839+0 .530  

512 0.9 39.559 + 1.288 38.928 + 1.257 32.474 _____ 0.957 29.712 + 0.839 

Table IX. Ratios of Stat ic Critical Exponents and Dynamic Critical Exponents 
z~n,. ~ Coming from the Power -Law Fits of the Results Contained in 

Tables IV-VI I I  ~ 

4-state Ports model ZF model X2 model lsing model 

Ratio Numerical Exact Numerical Exact Numerical Exact Numerical Exact 

";/i, 1.744+0.001 7/4 1.750+0.004 7/4 1.751 _+0.001 7/4 1.7501 +0.0002 7/4 

"/'/v 1.744 + 0.001 7/4 1.668 ___ 0.005 5/3 1.605 + 0.001 1.6045 1/2 
a/v 0.768+0.009 1 xlog -3-" 0.663+0.006 2/3 0.438+0.008 0.4183 log 

zi,,.,, 0.876+0.0.12 >~l• ~2 0.740+0.010 />2/3 0.477+0.028 />0.4183 0.240+0.004 ~>log 

For  the Is ing model  we include the fits to the dynamica l  da t a  repor ted in ref. 7. Fo r  each 

model  we present  two co lumns ,  on wi th  the M C  results  (left) and  the o ther  wi th  the exact  
k n o w n  results  (r ight) .  The  errors  represent  one s t anda rd  dev ia t ion  (i.e., confidence level of 

6 8 % ) .  The no ta t ion  "1 x log 3/_,, means  tha t  the leading term of the specific heat  for the 

4-state  Pot t s  model  behaves  l ike L Iog-3/2L.  Likewise,  " log"  means  tha t  the leading term of  
the specific heat  for the Is ing model  is log L. 
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standard deviation (i.e., confidence level of 68%). In reporting the number 
of measurements (MCS), we have already subtracted the MC steps discar- 
ded for equilibration. 

A summary of our estimates of critical exponents, together with the 
theoretically predicted exponents, can be found in Table IX. The data 
analysis leading to these estimates is the subject of the next two sub- 
sections. 

4.4. Static Quantities 

For each quantity (0, we carry out a fit to the power-law Ansatz 
C = A L  p using the standard weighted least-squares method. As a precau- 
tion against corrections to scaling, we impose a lower cutoff L ~< Lmi n o n  

the data points admitted in the fit, and we study systematically the effects 
of varying Lmi n. In general, our preferred fit corresponds to the smallest 
L,,i~ for which the goodness of fit is reasonable (e.g., the confidence level 2~ 
is > 10-20%), and for which subsequent increases in t m i n  do not cause the 
Z-" to drop vastly more than one unit per degree of freedom. 

4.4.1. Susceptibilities. We have fitted the values of the suscepti- 
bilities to the power-law functions X,,, = AL'/"  and X,, = AL;"/" as described 
above. The estimates for ~,/v and ~,'/v are, in all cases, very stable as we 
vary Lmi n. This means that the corrections to scaling for these observables 
are not statistically significant (to the degree of accuracy we have attained 
here). 

For the 4-state Potts point (Table IV), 21 our preferred estimate is 
obtained for Zmi n = 16: 

(P)  = )'--' (P)  = 1.744 + 0.001 (4.27)  

with Z2= 2.21 for 5 degrees of freedom (DF), confidence level = 82%. The 
difference from the exact result (y/v = 7/4) is small, but it is roughly equal 
to six standard deviations. Possibly this is due to a small correction-to- 
scaling effect (which has become statistically significant due to the very 

2o "Confidence level" is the probability that Z" would exceed the observed value, assuming that 
the underlying statistical model is correct. An unusually low confidence level (e.g., less than 
5 %) thus suggests that the underlying statistical model is incorrect--the most likely cause 
of which would be corrections to scaling. 

2t We will hereafter use P, ZF, and X2 to designate the points where the results apply. We 
use Dis to denote the Ising model. 
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high precision we have obtained on the smaller lattices). For  L m i  n = 128 we 
have 

)' ( P ) = ) / ( P )  = 1.744 _+ 0.004 (4.28) 
V 1) 

with Z 2 = 1.54 (2 DF, level = 4 6 % ) ,  which is now fully compatible with the 
exact result. 

For  the ZF point (Table V), our preferred estimates are obtained for 
L m i  n = 128: 

)-~ (ZF) = 1.750 ___ 0.004 (4.29) 
V 

with X 2 = 1.54 ( 1 DF, level = 22 % ), and 

7' (ZF) = 1.668 __ 0.005 
I) 

(4.30) 

with 3(3= 1.57 (1 DF, l eve l=21%) .  The agreement with the exact results 
(y/v = 7/4 a n d / / v  = 5/3) is extremely good, and the ;(~- is acceptable. 

For  the point X2 (Table VII), we get our preferred estimates for 
Lmi, = 32: 

-Y (X2) = 1.750 + 0.001 (4.31) 
IJ 

with Z2 =0.98 (3 DF, level 81%),  and 

)" (X2) = 1.605 + 0.001 (4.32) 

with X 2 = 1.24 (3 DF, level = 74 %). The agreement with the exact values 
7/v = 7/4 and / /v  = 1.6045 is again extremely good, as is the Z-'- 

Finally, we reanalyzed the MC data of Baillie and Coddington 17~ for 
the Ising model (Table III).  Our  preferred fit is for Lmi n = 64: 

( D i s )  = 1.7501 _+ 0.0002 (4 .33)  
V 

with 2:2=0.75 (3 DF, l e v e l = 8 6 % ) .  Both the high accuracy of the result 
and the agreement with the exact answer (y/v = 7/4) are remarkable. 

4.4.2.  S p e c i f i c  H e a t .  Here we have to distinguish between the 
4-state Potts model and the other two points (ZF and X2). For the latter 
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Table X. 
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Estimates" of o/v and Zznt. ~ for the 4-State  Potts Model at Crit icality 
As a Function of the Points Involved in the Fit (L~>Lm~.) 

CH ~ La/V Tin l .  e7 ~ L Z i n t '  "r 

Lmi n 5/I,' 2"2 "-int. ,-r 2"2 

16 0.749_+0.003 13.82(DF5,1eve12%) 0.867_+0.009 
32 0.756 _+ 0.004 5.66 (D F 4, level 23 % ) 0,876 + 0.012 
64 0.762_+0.005 1 .84(DF3,  level61%) 0.887_+0.017 

128 0.768_+0.009 1.40 (DF 2,1evel 50%)  0.861 _+0.033 
256 0.781 _+0.019 0.71 (DF 1, level 40%)  0.880_+0.067 
512 0.824-+0.054 0.00 (DF 0, level 100%) 1.080-+0.194 

4.32 (DF 5, level 5 0 % )  
3.16 (DF  4, level 5 3 % )  
2.26 (DF 3, level 52%)  
1.31 (DF 2, level 52%)  
1.20 (DF 1, level 27%)  
0.00 ( DF  0, level 100 % ) 

Errors represent one standard deviation, DF stands for the number  of degrees of freedom, 
and "level" is the confidence level of the fit (i.e., the probability that 2"-" would equal or 
exceed the observed value, assuming that the underlying statistical model is correct). The 
preferred fits are given in boldface. 

points the analysis is a little bit more  complicated,  as we have to deal with 
a specific-heat matrix CH [cf. (4.24)] instead of  a single number.  

For  the 4-state Potts  model  (Table IV) we first tried to fit the data  to 
a pure power-law function Cn  = A L  ~/''. The results of  this fit (as a function 
of  L,,~,,) are contained in Table X. We observe a systematic trend toward  
higher values of  ~/v as we increase L,,,i,,. For  Lmi n 1> 64 the g 2 values are 
acceptable. Nevertheless, being conservative, we take as our  preferred fit 
Lm~. = 128 (boldfaced in Table X): 

- (P) = 0.768 _+ 0.009 (4.34) 
v 

with Z2=  1.40 (2 DF,  level = 50%).  Clearly, the agreement  with the exact 
known result (a/v = 1 ) leaves something to be desired! A similar result was 
reported by Wiseman and Domany :  ~z41 ~/v = 0.747 _+ 0.003, using lattices 
16 ~< L ~< 128. As a matter  of  fact, if we fit our  own data  restricted to the 
interval 16 ~< L ~< 128, we obtain o~/v = 0.741 ___ 0.004 (Z 2 = 3.07, 2 DF,  level = 
22%) ,  which is consistent with the value of  Wiseman and Domany .  Thus,  
as we go to larger lattices we obtain estimates of  c~/v that are closer to the 
exact value, but the improvement  from L .. . .  = 128 to L ... .  = 1 0 2 4  is 
extremely slow. 

However,  we already know on theoretical grounds  t16-~8~ that the true 
leading behavior  o f  the specific heat involves a multiplicative logari thmic 
correction 

Ctt "-~ L log -3/2 L (4.35) 
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Table XI. Results a of the Weighted Least-Square Fits for the Specific Heat of 
the 4-State Potts Model at Criticality to Function CH=AL alv Iog-a/2L 

and CH=A' Iog-P L 

C~,1 ~ L ~~ log -s,2 L C .  ~ L log -r  L 

L, , .  a i r  Z-" P Z-" 

16 1.118_+0.003 236.01(DF5,1eve15x10 -4~ 1.008_+0.011 86.06(DF5,1eve15x10-171 

32 1.086_+0.004 54.23(DF4,1eve15• tll 1.102+0.016 24.02(DF4,1eve10.008%) 
64 1.062 _+ 0.005 9.47 ( D F 3, level 2 % J 1.185 _+ 0.025 5.33 ( D F 3, level 15 % I 

128 1.039 _+ 0.009 0.45 (DF 2, level 80 % ) 1.286 + 0.052 0.34 (DF 2, level 84 %) 

256 1.030 + 0.019 0A9 (DF l, level 66%) 1.320_+0.115 0.23 (DF l, level 63 %) 

512 1.052_+0.054 0.00(DF0, level 100%) 1.158_+0.355 0.00(DF 0, level 100%) 

u The  exact  resul ts  are ~/v = I and  p = 312, respectively. For  each fit we show the Z'-, the 

n u m b e r  of degrees  of  freedom (DF) ,  and  the confidence level ("level"). 

In the range of L considered here, the logarithmic factor could be 
mimicked by a power-law function, thus yielding an "effective" critical 
exponent (~/vLjr lower than s l y=  1 (in agreement with our numerical 
results). To check this, we tried to fit our data to the function 
C n =  A U  '/" 1og-3/2 L (see Table XI). We observe that the estimates for ~/v 
are much closer to the exact value. These estimates are slightly higher than 
1, but there is a clear systematic trend toward smaller values of o~/v as Lmio 
is increased. For L,,,~, = 128 we obtain a reasonable fit with 

(x 
- (P) = 1.039 __+ 0.009 (4.36) 
Y 

with Z 2 =0.45 (2 DF, level = 80%). However, this value still differs from 
the true one by four standard deviations. 

Alternatively, we can fit the data to the trial function Cn = A' log -p  L 
(see again Table XI). We also observe a systematic trend toward the exact 
value p = 3/2 = 1.5, but the estimates of p are not compatible within errors 
with the exact value. Our preferred fit occurs for L m i  n = 128, 

p(P)  = 1.286 +_ 0.052 (4.37) 

with Z2=0.34 (2 DF, l eve l=84%) .  This estimate is again four standard 
deviations away from the expected result. 

In summary,  it is extremely difficult to obtain a reliable estimate of ~/v 
when the leading term of the specific heat behaves like (4.35). For lattices 
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up to L = 1024 it is imposs ib le  to see any th ing  even resembl ing  the correct  
exponent  oc/v= 1. On  the o ther  hand,  if we in t roduce  in the fits some 
theoret ica l  in format ion  (e.g., the power  of  the logar i thmic  te rm)  the 
es t imate  improves  a lot, but  it is still four s t anda rd  devia t ions  away  from 
the expected result. We  need to go beyond  L = 1024 to d isentangle  the t rue 
a sympto t i c  behav io r  of  the specific heat.  

F o r  the Z F  and X2 models ,  we have to dea l  with a specific heat  ma t r ix  
~'H as in (4.24). Fi rs t  we c o m p u t e d  all its mat r ix  elements;  then we 
d iagona l ized  it to ob ta in  the eigenvalues CH, mi, and  CH . . . . .  and  the corre-  
spond ing  eigenvectors  l~mi n = ( I ,  ( l)  and ~ = (a, - 1) [cf. (4.25)].  The  
er ror  bars  on the eigenvalues and  on the e igenvector  p a r a m e t e r  a are com-  
puted  by using the s t anda rd  e r r o r - p r o p a g a t i o n  formulas,  The  m i n i m u m  
eigenvalue CH. mi, is expected to tend  to a finite cons tan t  as L--* ~ (i.e., to 
have cri t ical  exponent  zero),  as there  should  be a marg ina l  o p e r a t o r  
responsible  for movement s  a long  the cri t ical  self-dual curve (2.8). The  max-  
imum eigenvalue C n  . . . . .  is expected to g row as L ~/" with the power  given 
by (2.10b). In general  the value of  the p a r a m e t e r  a varies with the lat t ice 
size L, and  in the limit L ~ ~ we expect  a to tend to the value  

a~_ -= - �89 2 J  (4.38) 

[cf. (4.26)].  In Table  XII  we show the evolu t ion  with the lat t ice size of  the 
pa rame te r  a co r r e spond ing  to the models  Z F  and  X2, while in Tables  V 
and VII we repor t  the eigenvalues CH. max and Ctt. m~,. 

Table Xll. Eigenvectors" of the Specific-Heat 
Matrix CH 

L ZF X2 

16 -0.86034• -0.77163 • 0.00052 
32 -0.88553 • 0.00059 -0.79294 • 0.00042 
64 -0.89995 • 0.00052 -0.80885 • 0.00037 

128 -0.90944• 0.00039 -0.81835 • 0.00034 
256 -0.91529• -0.82414• 
512 -0.91858• -0.82828• 

oG -0.92388 (exact) -0.83771 (exact) 

They are parametrized such that ~i~mi . = (1, a) corresponds to tile smaller eigenvalue Cn..la. 
and fi~,,~,x = (a, - 1 ) to the largest eigenvalue Cn. m~- For the models ZF and X2 we give the 
measured values of the parameter a as a function of the lattice size L. The bottom row 
(L = ~)  shows the theoretically predicted infinite-volume value of a taken form (4.26) [see 
text ]. 
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ZF Model. If we try to fit C~ . . . .  for the point ZF (Table V) to a 
pure power-law function, we obtain estimates of oL/v which are quite consis- 
tent among themselves for Lm~. >/64. The fit for Lm~, = 64 gives 

- (ZF) = 0.663 + 0.006 (4.39) 

with X 2 = 1.12 (2 DF, level = 57 % ). This result agrees well with the theoreti- 
cal prediction oc/v = 2/3. 

The minimum eigenvalue of ~ ,  is almost constant within statistical 
errors for L/> 128. As a matter  of fact, the fit to a constant * CH. min  is very 
good for L m i  n = 128: the result is C/~.m~, 0.562+0.004 with X2=0.55 
(2 DF, l e v e l = 7 6 % ) .  

Finally, from Table XII we see that the eigenvector parameter  a 
appears to be tending as L ~ co to the predicted exact value (4.38). We can 
test this convergence quantitatively, and also extract an estimate of the 
correction-to-scaling exponent A, by fitting the data to a - a ~ .  = A L - J .  We 
obtain a reasonable fit already for L m i  n = 16: 

A(ZF) = 0.715 + 0.008 (4.40) 

with Z2= 1.08 (4 DF, level = 90%). 

)(2 Model. The estimate of o~/v for the point X2 (Table VII)  is 
not well stabilized: it decreases systematically as Lmin increases (see 
Table XIII),  and for t m i  n ~ 64 the X 2 values are horrible. Our preferred fit 
is obtained for Ln, in = 128: 

~X 

- (X2) = 0.438 + 0.008 (4.41) 
V 

with ;(2= 0.32 (1 DF, level = 57 %). Notice that the Z 2 value is now very 
reasonable. This estimate is still three standard deviations away from the 
exact result ~/v = 0.4183, but the trend is in the right direction. Moreover, 
for Lmi ,=256  we obtain a slightly lower estimate, ~ /v=0.430+0.017,  
which is now consistent with the the exact result. The smallness of the dif- 
ference between the observed and the true values (less than 0.02) suggests 
that multiplicative logarithmic corrections (as occur in the Potts case) are 
absent at this point; we are most likely seeing the effects of additive correc- 
tions to scaling of the form L -'J wi th / I  on the order of 0.5 (or conceivably 
1/log L). Wiseman and Domany  ~24~ reported a value re~v= 0.542 + 0.008, 
which is much larger than the exact one and than ours. This is surely due 
to the fact that they considered only rather smaller lattices (16 ~< L ~< 128). 

822/85/3-4-3 
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Table XIII. 

Salas and Sokal 

Estimates ~ of a/v and zz.t.z, for the Point X2 As a Function of the 
Points involved in the Fit (L ~>Lm|n) 

C n . . . .  ~ L ~j" log -3/2 L 

Lmi n 0~/I, X" --int. x,~ Z z 

16 0.484_+0.002 76.78(DF4,1eve18x10 ~) 0.534+0.007 5.16(DF4,1eve127%} 
32 0.469 _+_ 0.003 26.22 ( DF 3, level 9 x 10 - 6 % ) 0.527 _+ 0.011 4.29 ( DF 3, level 23 % ) 

64 0.455 __+ 0.004 7.50 ( DF 2, level 2 % ) 0.509 _+ 0.016 2.38 ( D F 2, level 30 % ) 

128 0.438 __ 0.008 0.32 (DF I, level 57%) 0.477 _ 0.028 0.39 (DF I, level 53%) 

256 0.430+_0.017 0.00 (DF 0, level 100%) 0.510+_0.061 0.00 (DF 0, level 100%) 

" W e  also show the X 2, the n u m b e r  of degrees  of freedom (DF) ,  and  tile confidence level 

("level") of each fit. 

To check this, we fit the subset of our data corresponding to 16 ~< L <~ 128, 
and obtained o~/v = 0.502_ 0.003 with X2= 8.81 (2 DF, level = 1.2 %). 

The smallest eigenvalue is again consistent with a constant C*,min 
within statistical errors for L >~ 128. For  Lmin = 128 the result is * C H .  rain = 

0.303-I-0.002 with Zz= 1.17 (2 DF, level= 56%). 
Finally, the behavior of the eigenvectors is rather similar as the ZF 

case: they approach the predicted exact value (4.38) as L grows. If we fit 
the data to a - a ~  = A L  -•, we obtain for Lrnin  = 128 the value 

A(X2) = 0.518 + 0.024 (4.42) 

with Z2= 0.02 (1 DF, level = 88 %). This value for the exponent A agrees 
well with the rough estimate obtained from the corrections to scaling in the 
specific heat. 

Ising Model .  We also computed the effective exponents (~/v)en- 
associated with a pure-power-law fit to the specific heat of the Ising model, 
for various intervals of L. Such an effective exponent will be useful as a 
standard of comparison for the numerically extracted estimates of the 
dynamic critical exponent zi,t, ~ (see Section 4.5.1 below). First we com- 
puted the exact values of the specific heat for a finite lattice, using the for- 
mulate of Ferdinand and Fisher: ~551 see Table III. We then performed a 
power-law fit, with the (fake) error bars chosen so as to give all points the 
same statistical weight; we took Lm,x = 512 and considered various values 
of L m i  n. As expected, (o~/v)err is not stable: it decreases as Lmin grows, 
ranging from (~/Vbr=0.244 for Lmi ,=8  to (~/vbr=0.162 when 
Lmin = 256. 
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4 . 4 . 3 .  S e c o n d - M o m e n t  C o r r e l a t i o n  L e n g t h .  The  q u a n t i t y  
x ( L ) - ~ ( L ) / L  is expected  to a p p r o a c h  a c o n s t a n t  x* as L ~ ~ .  Th i s  con -  
s t an t  is charac te r i s t i c  o f  the mass less  A s h k i n - T e l l e r  field t heo ry  on  a con -  
t i n u u m  to rus  wi th  aspect  ra t io  l ,  a n d  in pr inc ip le  it shou ld  be ca lcu lab le  
via  c o n f o r m a l  field t heo ry  ( a l t h o u g h  to o u r  k n o wledge  this ca l cu l a t i on  has  
no t  yet  been  done) .  

O u r  M o n t e  Ca r l o  d a t a  are  cons i s t en t  wi th  this behav io r .  F i r s t  we tr ied 

to fit the  va lues  for L >/Lmin to a c o n s t a n t ,  u s ing  the weigh ted  leas t - squares  
m e thod .  In  Tab l e  XIV  (fits m a r k e d  C)  we repor t  o u r  best  es t imates  for x*. 

It  is i n t r i g u i n g  to no t e  tha t  the va lues  of  x*  are all qu i te  close to 1, 

t h o u g h  the  differences f rom 1 are  7 -10  s t a n d a r d  dev i a t i ons  for the po in t s  
Z F  a n d  X2. Th i s  (nea r )  a g r e e m e n t  m i g h t  be  due  to the  fact tha t  all these 
three  m o d e l s  have  the  s ame  cen t ra l  charge  ( c =  1). However ,  a de ta i led  
s t udy  is needed  to u n d e r s t a n d  the obse rved  var ia t ions .  O n  the  o the r  hand ,  
the va lue  of  x~* mani fes t ly  decreases  as we m o v e  t o w a r d  the  p o i n t  K =  0, 
where  the  a sp ins  are d eco u p l ed  f rom the r spins.  At  tha t  p o i n t  we expect  

-~o'r 

Table XIV. Estimates of x* for the Three Points of the AT Self-dual 
Curve Considered" 

Point Type Lmin x* ( =x* = Xa*r) 2 '2 

Potts C 128 1.002 _+ 0.003 2.56 (DF 3, level 46% 
Potts L 16 1.023 _+ 0.007 1.94 ( DF 5, level 86 % 

Point Type Lmi n X~ X 2 

ZF C 16 1.015 + 0.002 4.12 (DF 5, level 53 % 
X2 C 64 0.980 _+ 0.002 1.80 (DF 3, level 61% 
X2 L 16 0.965 _ 0.006 1.15 (DF 4, level 89% 
X2 zl = 1/2 16 0.975 + 0.003 1.08 (DF 4, level 80 % 

Point Type Lmi, x*~ Z: 

ZF C 16 0.852 _+ 0.002 2.26 ( DF 4, level 69 % 
X2 C 256 0.737 _+ 0.002 0.57 (DF l, level 45 % 
X2 L 16 0.729 • 0.004 2.08 ( DF 4, level 72 % 
X2 A = 1/2 16 0.736 + 0.002 2.09 (DF 4, level 72 % 

" For each point we present the result of the least-square fit to a constant (C) or to a function 
of the type (4.44) (L). For the X2 model we also include the fit to constant plus corrections 
of order zl = 1/2. We also include the 2 ,2, the number of degrees of freedom (DF), and the 
confidence level ("level"). 
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We can also study the rate at which ~(L) /L  approaches  x* for these 
three models. For  the 4-state Potts  model  we already know c561 the answer 
for the case of  the exponential  correlat ion length (~e~p = 1/mass gap) on an 
L x ~ cylinder. The behavior  for large L is 

L ~z-" it-" log 2----L + o (4.43) 

Of  course, there is no guarantee that the asymptot ic  behavior  of  
. . . . .  0 . . . . . . . .  , on a torus is the same as that  of  ~cxp on a cylinder, but  it is 

a plausible guess. Therefore, we tried to fit our  data  to the function 

A 
~(L) /L  = x* + J'og 2L (4.44) 

The result can be found in Table XIV (fit marked L), and in more  detail 
in Table XV. The ;t ,2 of  this fit is excellent, but  roughly the same values of  

Table XV. Estimates of x(L) As a Function of the Number  of Points Included 
in the Fit (L ~Lmin) for the 4-State Potts Model at Criticality" 

xl L) = x* x(L) = x* + A]log 2L 

Lmi n x *  X 2 x *  X 2 

16 0.9943 + 0.0015 19.00 ( DF 6, level 0.4% I 1.0228 4- 0.0071 1.95 (DF 5, level 86 %) 

32 0.9965+0.0017 10.19{DF5,1eve17%) 1.02744-0.0107 1.621DF4, ievelS0%) 

64 0.9993 _+ 0.0021 3.98 ( DF 4, level 41% J 1.0247 -+ 0.0165 1.58 I DF 3, level 66 % 

128 1.0023 4- 0.0032 2.56 (DF 3, level 46%)  1.0380+0.0326 1.35 (DF 2, level 51%) 

256 1.0050+0.0046 1.92 (DF 2, level 38%1 1.0683+0.0713 1.12 (DF 1, level 29%) 

512 1.0118_+0.0075 0.57 (DF 1, level 45 %1 0.8436_+0.2235 0.00 (DF 0, level 100 %) 

1024 0.9968_+0.0211 0.00 (DF 0, level 100%) 

.vi L}  = x * + A / x / " s  x ( L )  = x* + A l L  

Lmm x* X 2 X* Z 2 

16 i.0098 -I- 0.0041 1.94 (DF 5, level 85 %) 1.0023 + 0.0026 3.38 (DF 5, level 64 % ) 

32 1.0118 + 0.0055 1.65 (DF 4, level 80 %) 1.0051 + 0.0035 1.92 (DF 4, level 75 %) 

64 1.0109 + 0.0078 1.62 ( D F 3, level 65 % ) 1.0060 + 0.0050 1.86 1D F 3, level 60 % ) 

128 1.0163 + 0.0132 1.36 (DF 2, level 51%) 1.0100 + 0.0080 1.44 (DF 2, level 49%) 

256 1.0283+0.0257 1 . 0 7 ( D F l , l e v e l 3 0 % )  1.0189+0.0147 0.93 (DF l, level 30%) 

512 0.9557 + 0.0745 0.00 ( DF 0, level 100 % I 0.9798 + 0.0431 0.00 (DF 0, level 100 % J 

" W e  s h o w  the  fit o f  x ( L )  to  a pu re  c o n s t a n t ,  a s  well as  to  a c o n s t a n t  p lus  s o m e  dec r ea s ing  

funct ions .  W e  a l so  inc lude  the  ;(2 the n u m b e r  o f  degrees  o f  f r eedom ( D F I ,  a n d  the  c o n -  

fidence level (" level")  for  e ach  fit. 
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Z 2 could have been obtained using corrections of the type 1/x/~ or 1/L (see 
Table XV). The values of x* vary a little bit from one fit to the next (in 
some cases by several standard deviations). For  a full understanding of 
these results, it would be very helpful to have a theoretical prediction 
analogous to (4.43) for the second-moment correlation length ~ on a torus. 

For  the rest of the self-dual curve we have no theoretical hint 
analogous to (4.43), so we must fit our data empirically. For the ZF model 
the fits of x~o, and .%~ to a constant are so perfect (Zmin = 16) that no 
further conclusions could be obtained (see Table XIV). For  the X2 model, 
by contrast, the fits to a constant need a much higher value of L m i n ,  

indicating that the corrections to scaling are statistically significant. First 
we tried a correction of the type x = x* + A L - J  with A = 1/2; this value is 
suggested by the result (4.42) obtained in the preceding subsection. The fits 
are very good, even for Lmi n = 16 (see Table XIV). Similarly good fits are 
obtained also with A = 1/4, 1, 2. Finally, we also tried a logarithmic fit as 
in the 4-state Potts model. The results (marked with L in Table XIV) are 
also excellent. It is worth mentioning that the estimates of.Y* and x~'* vary 
slightly from one type of fit to another, in some cases by several standard 
deviations. 

4.5. Dynamic Quantities 

In this section we analyze both the integrated autocorrelation times 
rim. e and the exponential autocorrelation times %~p, e. Using standard 
power-law fits to the Ans~itze Tint. e = AL:*n" ~' and r~xp, e = AL-'~ ,r, we can 
extract the dynamic critical exponents.-'-' However, the existence of multi- 
plicative logarithmic corrections to the specific heat for the Ising and 
4-state Potts models suggests, in view of the Li-Sokal bound, that similar 
multiplicative logarithmic corrections might occur also in the autocorrela- 
tion times. We shall look for such corrections in two ways: 

(a) By fitting to an explicit logarithmic Ansatz r = AL--(log L) p. 

(b) By studying the ratio r/C;~ (for the X2 and ZF models we con- 
sider the ratio r / C n  . . . .  ). 

4.5.1. Integrated Autocorrelation Time: Power-Law Fits. 
From Tables" IV, VI, and VIII we see that the integrated autocorrelation 
time for ,/h '2 (resp. ,/#~, and J [ ~ )  is always slightly smaller than the 

22 We emphasize that in general Zint. C need not  be equal to Zexp. e. However,  in SW-type algo- 
r i thms it does appear  that  the autocorrelat ion function of the energy is very close to a pure 
exponential,  so that rim, 6./rexp, 6. approaches  a constant  (in fact, a constant  very close to 1 ) 
as L -~ m.  So in these algori thms we do empirically seem to have tint, 6" = "t'exp. ,r 
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integrated autocorrelation time for g (resp. g,o and g~). Furthermore,  we 
see that the ratio of those autocorrelation times is a constant (i.e., inde- 
pendent of L) within statistical errors 

rint , .gZ(p)  
=0.978 • (4.45a) 

r~nt. "~d~ (ZF) = 0.944 + 0.018; ,nt..,/;~ (ZF) = 0.887 + 0.020 (4.45b) 
Tint..~',~ Tint, ~o-r 

T ~ T in t . .  #~r  
i"t" //:~ (X2) -= 0.857 + 0.018; (X2) = 0.803 ___ 0.017 (4.45c) 

Tin t ,  ~,'~ Tint. '~, ,Tr 

Likewise, if we look at the ratio rim . eo~/r~xp, e,~ for the points ZF and X2, 
we see that in both cases that ratio is also consistent with a constant: 

Tint. ~',~ ( Z F )  = 0.960 + 0.017 (4.46a) 
Tint. d',~ 

Tint, e;~ (X2)  ~- 0.962 +_ 0.013 (4.46b) 
Tint, d'~ 

It therefore suffices to consider the critical behavior of r~,t. e (for Potts) and 
Tint, 8,~ (for ZF and X2); all other quantities will have the same dynamic 
critical exponent. 

Potts Model .  If we fit the data from the 4-state Potts model point to 
a pure power - law funct ion  Tint. ~ = A L : " '  ~ we obta in  a good fit a lready for 
Ln, in = 16 (see Table X). However, there seems to be a weak upward trend 
with Lmin, so to be conservative we choose Ln,~n = 32 as our preferred fit: 

Zint. 6"(P) = 0.876 _ 0.012 (4.47) 

with Z 2 -  - 3.16 (4 DF, level- -53%).  Notice that this value of-int. ~ is strictly 
greater than the effective exponent (~/v)~n---0.768 obtained by a pure 
power-law fit [see (4.34)]. This implies that the Li-Sokal  bound (1.1) is 
satisfied, but it is apparently not sharp. We can also compare the 
power-law estimates zi.t, ~ and oc/v for each Lmin separately (see Table X), 
and again conclude that the Li-Sokal  bound is always satisfied, but that it 
is not sharp. Note, however, that this effective exponent (zim" r 
0.11 is consistent with the true behavior of T~,t. e r / C ,  being either a small 
positive power or a logarithm. 

If we compare our results for the 4-state Potts model with the embedd- 
ing algorithm (see Table IV) to those quoted in ref. 9 (which correspond 
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to the direct algorithm of Section 3.1), we see that the ratio of the two 
autocorrelation times is more or less constant within statistical errors, and 
that there is no systematic trend as L grows. For these reasons, we con- 
clude that they are proport ional  in the limit L ~ 00. -,3 

direct 
~int, ~ (P) = 1 . 5 1 6 + 0 . 0 3 5  embedded 

Tint, 8 
(4.48) 

In particular, the direct and embedding algorithms belong to the same 
dynamic universality class (as was of course to be expected). It follows 
from (4.48) that our algorithm is 150% as effective as the standard SW 
algorithm for this model in terms of autocorrelation times. However, our 
algorithm needs roughly twice the CPU time for a complete sweep over the 
lattice (there are twice the number of points as in the Potts formulation); 24 
so, in the end, the embedding algorithm is about  25 % less efficient than the 
standard SW algorithm for the 4-state Potts model at criticality. 

Our  estimate of zint" ~ for a pure power-law fit, 0.876 + 0.012, is very 
close to the result z~nt, e. l c = 0 . 9 2 + 0 . 0 1  found by Wiseman and 
Domany  124~ for the single-cluster version of the direct algorithm. 25" 26 Thus, 
the 2D Potts model with q = 4  conforms to the behavior found pre- 
viously 16~ for the 2D Ports models with q = 2 ,  3, in which Zint. d, i c ~  
zint.*,sw. On the other hand, this almost equality seems not to occur for 
Ising models in dimension d>~3. c~2" ~3~ 

Z F  M o d e l .  For  the ZF point (Table VI), the estimates for z~nt, ~,~ are 
quite stable, giving for Lmi n = 32 

Zint, ~,o(ZF) = 0.733 _ 0.014 (4.49) 

23 It is therefore hardly surprising that the dynamic critical exponent reported in ref. 9 for a 
pure power-law fit, zim. e = 0.87 + 0.02, is virtually identical to our value (4.47). If we fit our 
data for L~<256 as in ref. 9, we obtain (for Lmin = 64) 2int, o- =0.900 +0.025 with Z2=0.63 
(l DF, level = 43 %). This result is also compatible within errors with the one reported in 
ref. 9. 

24 We have directly measured the CPU ration between these two algorithms and it is ~ 1.9, 
i.e., very close to the guessed value of 2. 

_,5 We emphasize that zi,t. 6. tc is the dynamic critical exponent for the autocorrelation time of 
the single-cluster algorithm measured in units of"equivalent sweeps.'" This is d -  y/v = 1/4 less 
than the dynamic critical exponent for the autocorrelation time measured in units of 
"cluster hits." 

26 Actually, the Wiseman-Domany result was obtained with 16-N<L ~< 128. If we fit our own 
data with this constraint, we get for Lmi n = 32 the value -int, 8 = 0.876 + 0.021 with X 2= 1.96 
(1 DF, level= 16%). So our estimate o f  Zinl ,  d" is not sensitive to Lmax; and it differs from 
the Wiseman-Domany estimate of Zint. ~-IC by two standard deviations. 
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with X 2 -- 1.48 (3 DF, level = 68 %). Once again, the Li-Sokal  bound holds, 
but it is not quite sharp, as here ~/v--2/3.  

X2 Model.  At the point X2 (Table VIII), the corrections to scaling for 
z~,,t.,~,~ seem to be significant, just as they are for CH . . . .  (see Table XIII). 
The estimates for z~nl. ~,~ tend to be systematically smaller as Lmin grows 
(although this effect is only on the borderline of statistical significance, due 
to the rather large error bars). Our preferred fit u s e s  L m i  n = 128: 

Zint. ~,o(X2) = 0.477 _+ 0.028 (4.50) 

with g 2 -- 0.39 (1 DF, level = 53% ). Once again, the Li-Sokal  bound holds, 
but is not quite sharp, as o~/v= 0.438 (our numerical estimate) or 0.4183... 
(exact value). 

Also here we can compare our result with the one found by Wiseman 
and Domany ~24~ for the single-cluster algorithm. They obtain zint, e. ~c = 
0.61 _+0.01. This value is very far from ours, even if we fit our data for 
16 ~ L ~< 128 to facilitate the comparison with their data: in that case our 
preferred fit is zint.~=0.553_+0.012 for Lmin=16 and Z- '=0.32 (2 DF, 
level = 85 %). Here the difference between zint. ~. ~c and Zint. <f. SW is nearly 
four standard deviations, so it seems that the two algorithms belong to dif- 
ferent dynamic universality classes. 

Isin9 Model.  Finally, we reanalyzed the da~a of Baillie and 
Coddington ~7~ for the 2D Ising model (see Table III).  Our preferred fit is 
for Lmi n = 100, giving 

zi,t, ~(DIs) = 0.240 _ 0.004 (4.51) 

with X-'= 1.67 (2 DF, l eve l=43%) .  In this case the Li-Sokal  bound is 
clearly satisfied, as (~/v)~r~0.173 when Lmi, = 128 (see Section 4.4.2); and 
once again the bound appears to be not quite sharp. 

In summary,  the Li-Sokal  bound is fulfilled in all cases, but 
apparently not as an equality: the effective exponents (Z~nt. ~ -- ~X/V),~n- range 
from ~0.04 to ~0.11. However, we know that in two of the four cases - -  
namely, the Ising model and the 4-state Potts mode l - - the  leading behavior 
of the specific heat is not merely a power law, but rather contains multi- 
plicative logarithmic corrections. So the question of the sharpness of the 
bound cannot be answered until we take into account the exact leading 
term of the specific heat. This will be done in the next subsection. 

4.5.2. M i g h t  the Li-Sokal Bound Be Sharp M o d u l o  a 
Logarithm? It is well known that the true leading behavior of  the 
specific heat is not given by c~/v=0.768 (or any other power law) for 
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the 4-state Ports model, nor by 7/v=0.173 (or any other power law) for 
the Ising model. Rather, the behavior is L log-3/2 L and log L, respectively. 
A similar problem arises for the autocorrelation times: to answer the ques- 
tion of the sharpness of the Li-Sokal  bound, it is necessary to guess the 
"exact" leading behavior of Zint, ~. In analogy with CH, we may entertain 
the possibility that Z~n,,e contains a multiplicative logarithmic term (at 
least for the Ising and 4-state Ports models). 

Our first approach is to consider the ratio rint,~/Cz4. "-7 For  all four 
models, we find that this ratio is an increasing function of the lattice size 
L. We then distinguish three possible asymptotic behaviors: If rmL,~/CH 
tends to a constant as L-- ,  co, then the Li-Sokal bound (1,1) is sharp; if 
it grows like some logarithmic function, then the bound is sharp modulo 
a logarithm; and if it grows like some power law, then the bound is not 
sharp. It is reasonable to hope that the ratio rim ̀ ,e/CH will be less affected 
by corrections to scaling than either C~t or tint. a separately. (Of  course, 
this hope may also be false!) For the Ising model we took tint. 6" from ref. 
7 and the specific heat from the exact finite-volume solution given in ref. 
55. For  the other three models, we used our numerical data; in computing 
the error bar on the ratio, we used the triangle inequality, which of course 
yields only an upper bound on the true error bar. This overestimate of the 
error bars in the three non-Ising cases should be taken into account when 
interpreting the results. 

We tried to fit the ratio rim . er/CH to various different Ans~itze (see 
Table XVI). The first is a pure power-law function. In all cases the fit is 
very good and the estimates of the power are very small (between 0.05 and 
0.12); the power seems to increase slightly as we go from the Ising model 
to the 4-state Potts model. Note also that the fit for the Ising model 
requires Lmi n = 100 in order to get a reasonable 2"2, while for the other 
three models an excellent 2 '2 is obtained already for Lmin = 16. This arises 
from the very accurate data in the Ising case, which permit the observation 
of very small corrections to scaling, in contrast to the rather larger (and 
overestimated!) error bars in the three non-Ising cases. 

Often such small powers indicate that the true behavior is logarithmic. 
Indeed, a logarithm can be very well mimicked by a power law over any 
not-too-wide range of L. We therefore tried various combinations of  
logarithmic ~nctions.  The first one was a function A log p L. The quality of 
fit for the Ising model is rather inferior to that obtained with a power-law 
function, although the confidence level is still reasonable (27 %). However, 
for the three other models, the fits are very stable and give excellent values 

27More precisely, we consider rint.~/C,q for the Ising and 4-state Potts models, and 
tint. o,/Ctt . . . .  for the X2 and ZF models. 
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Table XVI. Results of Fitting the Ratio Tim,,~/C H for Different Ans~tze 
(Power-Law,  Logarithmic, and Bounded) for All Models" 

Ansatz Ising X2 ZF 4-state Potls 

A L r p = 0.060 + 0.004 p = 0.051 __. 0.009 p = 0.077 +_. 0.012 p = 0. I 18 + 0.012 

Z- '= I .02(2DF,  60%) X- '=I .28(4DF.  86%I Zz=I .2314DF.  87%) Z-~=I.39(5DF, 93%) 

Lm, . = 100 L~., = 16 Lm~. = 16 Lm, . = 16 

/I Iogt' L p = 0.315 _.+ 0.020 p = 0263 +__ 0.061 p = 0.311 __. 0.049 p = 0.543 + 0.073 

/ . '~=2.59(2DF. 27%1 Z2=0.63(3DF.  89%} Z==I .15 (4DF ,  89%) Z = = l . 9 2 ( 4 D F ,  75%} 

L.,,. = 100 L.,,,, = 32 L.,,,, = 16 L.,,,, = 32 

A+BlogL Z-~=I.43(2DF, 59%) Z'~=l.4314DF, 84%) Z-~=I.03(4DF, 91%) Z-~=l.98(5DF, 85%) 

Lm,., = I00 L~,., = 16 L..., = 16 L.,., = 16 

A Z " = 3 6 . 7 4 ( I D F .  10 '~1 Z z = I . 4 6 ( 2 O F ,  48%) Zz=0 .77(2DF.  68%) Z z = I . 5 6 ( 2 D F . 4 6 % I  

L.,., = 256 L,.., = 128 L~,.  = 128 L.,,,, = 256 

A+B/IogL Z- '=4 .00( IDF,  5%I  zz=O.9013DF. 76%I Z-'=0.8213DF, 85%) Z- '=0.6013DF. 75%I 

L,,,i . = 128 L.,,. = 32 L.,,. = 32 L...., = 64 

. , I + B L  ~" X- '=2 .57(2DF,  28%) 7 - ' =0 .63 (3DF.  89%) Z - ' = l . 0 1 ( 4 D F .  91%) Z- '=0.7713DF.  86%) 

Lm. ~ = 100 L..,, = 32 L,.,,, = 16 L,.,. = 64 

A + B / O  4 Z- '=4 .04(2DF.  13%I Z - '=0 .6?(3DF.  88%) Z " = I . 3 3 ( 4 D F .  86%) Z : = 0 . 6 6 ( 3 D F .  88%) 

L,,,,,, = 100 L,.., = 32 L,,,,. = 16 L,,,., = 64 

A+Bv/L Zz=5.3111DF, 2%) ) - '=0 .9913DF,  80%) X'~=0.~313DF. 84%) Z- '=0.6413DF. 89%) 

L.,,, = 128 L,,,., = 32 L.,., = 32 L.,., = 64 

A+B/L Z- '=IO.67( IDF,  O.I%I Z- '=0.6412DF. 42%) Z- '=0.18(2DF,  91"/,,) Z = = I . I I ( 3 D F ,  77%) 

L,.,. = 128 L,.,,, = 64 L.,,,, = 64 L..,, = 64 

" W e  on ly  show the "best" fits lbr each case. For each of them we give the value of the Z-'. 

the number of degrees of freedom (DF),  the conl]dence level, and the L,,,,, used. For the first 
two power-fits we also give the estimate of that power. 

of the Z 2. Next  we tried a fit to A + B log L; this gives very good  results for 
all four models. 

Finally, we tried to check whether the ratio *i,t. ~/Crt approaches a 
constant as L--* co. First we tried a fit to a pure constant A. Even by eye 
one can see that the values of  ri,t. e /Cu for different L exhibit statistically 
significant deviations (e.g., consecutive values differing by at least two 
standard deviations) for L ~< 128, even for the non-Ising models,  where we 
already k n o w  that the error bars are overestimated. So, not surprisingly, it 
is impossible to get a decent fit to a constant with Lm~ . ~< 128. However,  for 
the non-Ising models  with Lmi,, >1 256, the ratios r~n,. ~/C,,I are consistent 
with a constant A, at least if one takes at face value the overestimated error 
bars: see Table XVI. It follows that no reliable information can be obtained 
on the manner of convergence to a constant for these models  if one takes 
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Lmin>~256. Next we tried fitting the ratio Tint,,~/Clt to  A + B L  -'J with 
A = 2 ,  1, 1/2, 1/4, and 1/8, and also to A + B / l o g L  ( " A = 0 x l o g " ) .  For 
all the models, the fits with A = 1, 2 are both implausible and unreliable, 
as the parameter  B becomes very large (IBI > 10) and does not stabilize as 
Lmi n grows. For the Ising model, only the fits with A = 1/4, 1/8 have 
reasonable X'- values (confidence levels of 14% and 28%, respectively). 
Note, in particular, that the logarithmic-correction Ansatz gives a poor fit 
(level 5%).  For  the 4-state Potts model we always obtain unreasonably 
large values of IBI ( > 10), so we cannot trust these fits, even if they have 
reasonable values of Z-'- We therefore rule out this scenario for the 4-state 
Potts model. The good values of the Z 2 are surely due to the overestimated 
error bars. This is a warning against trusting the X 2 values for the other two 
non-Ising models. Finally, we get reasonable fits for the X2 and ZF models 
for 0 ~< A ~< 1/2; but perhaps the good 3( 2 values are not to be trusted. 

Let us discuss the above fits. For the Ising model we have been able 
to associate a reliable error bar  to the ratio tint ̀  ~/CH, SO we can trust the 
Z-' values. We conclude that an asymptotically bounded ratio with additive 
corrections like either zl = 0 • log or 3 />  1/2 is very unlikely to occur. The 
most plausible scenarios (i.e., highest confidence levels) are the pure power 
law with p = 0.060 ___ 0.004 or a simple logarithmic growth A + B log L. 
However, a logarithmic power-law behavior with p=0 . 315  +0.020, or an 
asymptotically bounded behavior with additive corrections given by 
1/8 < A < 1/4 cannot be completely ruled out. 

For the other three models we cannot trust the Z 2 values, as the error 
bars are overestimated. We have used the following criteria to interpret our 
results and decide which are the "best" fits: 

�9 Absolute X'- value. If  the X 2 value of a given fit is not good, then the 
fit is surely poor, as all the error bars are overestimated. 

�9 Relative X'- values. If two fits to the same data exhibit vastly dif- 
ferent values of X'-/DF, then the fit with the larger X~-/DF can be 
considered less plausible (all other things being equal). 

�9 Reasonable results. When fitting to a constant plus additive correc- 
tions (A + B L - J ) ,  we expect that the parameter  B should remain 
not too large (e.g., IBI < 10). If this does not occur, we tend to dis- 
t rust  the fit. 

�9 Vahle ofLmi  n. If Lmi n is taken large enough (i.e., >/256), then we 
can fit the data for the three non-Ising models with almost any 
additive-correction Ansatz, as all the values of tint, e;/CH are already 
consistent with a constant within the (overestimated) errors. Thus, 
given two fits with similar X'-/DF values, we tend to trust more the 
one with smaller Lmi n. 
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The 4-state Potts model is the clearest case. The asymptotic constancy 
of Tint. e r / C H  is clearly ruled out due to unreasonably large parameter  B in 
all the fits. Moreover,  all the asymptotic-constant fits need Lmin = 64 to 
obtain a decent X 2 (even with the overestimated error bars), whereas 
L,,in = 16 is sufficient for the pure power-law and A + B  log L scenarios. 
Even the logarithmic power-law Ansatz needs Lmin = 32 to achieve a com- 
parably good 3( 2. If we consider the X 2 when L m i  n = 16, we see that the best 
fits have X2=1.39 (power-law) and 1.98 ( A + B l o g L ) ,  while the others 
have 3.47 (A = I/8)) 3.64 (A log p L) and 5.61 (A = 1/4). We conclude that 
the two most likely scenarios are the pure power-law with p = 0.018 + 0.012 
and the simple logarithmic behavior A + B log L. 

For the X2 model we arrive at the same conclusion. The best fits need 
Lmi  n = 16, and the rest need at least Lmi ~ = 32. If we consider the Z 2 when 
Lmin = 16, we see that the best fits have X2= 1.28 (power-law) and 1.43 
(A + B log L), while the others have g 2 = 1.96 (zJ = 1/8), 2.39 (logarithmic 
power-law) and 2.68 (d = I/4). 

Finally, the ZF  model is the least clear case. Here most of  the fits are 
reasonable with Lm~ ~ = 16. Thus, we cannot decide among the pure-power 
scenario, the two logarithmic scenarios, and the scenario of asymptotic 
constancy with corrections to scaling given 1/8 < L1 < 1/4. 

On theoretical grounds one might expect some kind of "continuity" in 
the behavior of the ratio r~nt. ~/Ct~ along the self-dual curve: that is, one 
might expect the same scenario to hold everywhere along the curve (except 
perhaps at the Ising and 4-state-Potts points, where there might be addi- 
tional logarithmic effects). There are only two scenarios that are consistent 
with the data in all four cases: 

~ A L  p with small p 
Tint" d" /C  H~'~ ( A "~- B log L (4.52) 

Using the theoretically known exact behavior of Ctt, we can investigate the 
validity of the Ans/itze (4.52) directly on Z'int, ,~. For the Ising model these 
Ans~itze become 

,,~ ( A ' L  p log L 
Tint. g(DIs)  ~ ~A' log L + B' log'- L (4.53) 

A fit to the first Ansatz with L m i  n = 100 has Z2= 1.35 (2 DF, level = 51%)  
and gives p = 0.051 + 0.004, while a fit to the second Ansatz with Lm~n = 100 
has Z2= 1.69 (2 DF, level = 4 3 % ) .  For the X2 model the Ans~itze are 

~ A~Lp+O.4183  

Tint" ~'~ ~ ((A + B log L) L 0'4183 (4.54) 
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The first (pure power-law) Ansatz has already been studied in the preced- 
ing subsection, yielding ; (2= 0.39 (1 DF,  level = 5 3 % )  with Lmi n = 128 [see 
(4.50)];  the second Ansatz yields ; (2=0.42  (1 DF,  l e v e l = 5 2 % ) ,  also with 
Lmi n = 128. So both  fits are good,  and there is nothing to distinguish them. 
For  the Z F  model,  the Ans/itze are 

~'A'L p + 2/3 

rim . r (ZF)  ~ / . ( A  + B log L) L 2/3 (4.55) 

The first (pure power-law) Ansatz has already been studied in the preced- 
ing subsection, yielding 3(2= 1.48 (3 DF,  level = 6 8 % )  with Lm~ . = 32 [see 
(4.49)];  the second Ansatz yields Z2=1 .53  (4 DF,  l e v e l = 8 2 % )  with 
Lrnin= 16. So in this case there is a slight preference for the logari thmic 
Ansatz. Finally, for the 4-state Potts  model  the Ansfitze are 

~A'L  p+ J log  -3/2 L 
rim' e'~ ~ [ (A  + B log L) L log-2/3 L (4.56) 

The first one gives the power p = 0 . 1 3 _ 0 . 0 3  for Lmin = 128 with Z2=0 .96  
(2 DF,  l e v e l = 6 2 % ) .  The second one yields X2=0.98  for the same Lmi n 
(2 DF,  level = 61%).  Finally, one can try the fit 

rim. e:(P) "~ AL log -/ ' '  L (4.57) 

in which one imposes Zint, ~ = 1 x log - /  and at tempts  to find the multi- 
plicative logari thmic exponent  p' .  Here the stability of  the results is not  
very good  (see Table XVII).  One could argue that  the fit with Lmi n = 16 

Table XVII.  Results" for the 4-State Potts Model at Crit icality of 
Fitting the Aurocorrelat ion Time Tint, 8 to a Function AL Iog -"  L and of 

Fitting the Ratio CH/Tint. a to a Function B Iog-"  L 

rint..z ~ L Iog-I' L l'int, er ~ log e L 

L,,i, P y 2 p X 2 

16 0.538-t-0.038 3.35 DF5,1eve165%) 
32 0.563 -t:0.056 3.00 (DF4, level 56%) 
64 0.558-t-0.087 3.00(DF3, level39%) 

128 0.776+0.180 1.09 (DF 2, level 58%) 
256 0.736+0.402 1.08 (DF 1, level 30%) 
512 -0.525 ___ 1.280 0.00 (DF 0, level 100%) 

0.472 + 0.049 
0.543 + 0.073 
0.630 ___ 0.112 
0.515 + 0.232 
0.593 _ 0.518 
1.683 +__ 1.632 

3.64 ( DF 5, level 60% ) 
1.92 (DF 4, level 75%) 
0.85 (DF 3, level 84%) 
0.52 (DF 2, level 77% ) 
0.50 (DF 1, level 48%) 
0.00 (DF 0, level 100%) 

a In both cases, we show the X-', the number of degrees of freedom (DF), and tile confidence 
level ("level"). 
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already has a reasonable Z'- value, but we are inclined to be conservative 
and prefer the fit with Lmi~ = 128 (which of course has much larger error 
bars): 

p ' (P )  = 0.776 + 0.180 (4.58) 

with 2'2= 1.09 (2 DF, l eve l=58%) .  This result is compatible (within two 
standard deviations) with the expected value of p ' =  1/2. If we take into 
account the value reported in Table XVI for the fit r~,t. e/C~,= A log p L 
(p  = 0.543 + 0.073), we see that our estimates for p and p '  are compatible 
within errors (i.e., p '  = 3/2 - p = 0.957 + 0.073). However, that value o f p  is 
not compatible with the value of p ' =  1/2 corresponding to Ansatz (4.56b). 
Actually, our estimate o f p '  lies midway between the Ansatz and the value 
coming from our estimate of p. 

From the above results it is difficult to tell which is the true 
asymptotic behavior of r~,t. ,~/CH (and thus of r~,t. ~) To disentangle this 
we would need much larger lattices, as well as much better statistics on the 
lattices L > 128. 

Remark. Let us also test the conjecture proposed by Baillie and 
Coddington ~9~ for the Ising model: 

tint, ,~ ~ (A + B log L) L t'~ (4.59) 

where fl is the static critical exponent for the spontaneous magnetization; 
note that fl/v= 1/8 evewwhere on the AT self-dual curve. For  the Ising 
model, the fit is fairly good for Lm~. = 100, giving 2 '2 = 0.50 (2 DF, level = 
78 % ). The same conclusion applies to the X2 model (Lmi n = 128, 2'2= 0.42, 
1 DF, l e v e l = 5 2 % )  and to the ZF model (Lm~o=128, Z2=0.44, 1 DF, 
level = 51%). However, the fit is rather poor  for the 4-state Potts model: 
for Lmin=256 we only get 2'2=4.43 (1 DF, level =4% ). 

4.5.3. Exponent ia l  A u t o c o r r e l a t i o n  T ime.  The exponential 
autocorrelation time is for an observable ~; is defined as 28 

Itl 
rexp, e = lim (4.60) 

. . . . .  - - log  Ipee(t)l 

This autocorrelation time measures the decay rate of the "slowest mode" of 
the system, provided that this mode is not orthogonal to C. 

2s Strictly speaking, tile "'lim" should be replaced by "lim sup," as in (4.4). But in virtually all 
practical applications, the limit really exists. 
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The cr i t ical  behav io r  o f  rexp. e is, in general, different f rom the 
b e h a v i o r  o f  ~ , , .  e .  Th i s  fact can  be seen f r o m  the  s t a n d a r d  d y n a m i c  finite- 

s ize-sca l ing  A n s a t z  for the  a u t o c o r r e l a t i o n  func t ion  P e e(t): 

pe~(t;L),~ltj_P~he ( t ,'~(L))-- . (4.61) 
T e x p ,  

( H e r e  the  d e p e n d e n c e  on  the  c o u p l i n g  c o n s t a n t s  has  been  suppressed  for 

n o t a t i o n a l  s impl ic i ty . )  S u m m i n g  (4.61) o v e r  t, we find tha t  

r '  -z,~ (4.62) ~ i n t ,  ( '  e x p .  6 

or  equ iva l en t ly ,  

zi,t. e = ( 1 --  Pe ) Z~xp. e (4.63) 

. ( 1 . 4 )  
Thus ,  on ly  w h e n  Pe = 0 do  we h a v e  --int. ( -exp, d. 

�9 1 - S t a L e  PoLLs Moclel A u L o c o r r e ] a t i o t l  Ft l r l c ' l io t l  
,,~ r T 1 I t r r r T l . . . . .  I i ~%% 1 i 

"-~ 0.1 

L 16 ~- 

0 1 2 3 4 

t/~-int.E 

Fig. 2. Autocorrelation function l?~,dt) for the 4-state Potts model and L =  16 (IS l) and 
L = 32 (�9 with the abscissa scaled by rim ' ~-. The error bars are the square root of the 
diagonal terms of the covariance matrix (see Appendix B). 
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Here we consider the exponential autocorrelatlon time of the energy 
for the 4-state Potts model and of the observable Co for the X2 and ZF 
models. We expect that a similar behavior would be found for g~ for the 
X2 and ZF models, and for the squared magnetizations in all three models; 
but it did not seem worthwhile to carry out this analysis in detail. 

If  we plot the estimated autocorrelation function pr we see that it 
fits beautifully to a pure exponential for t>rint, e/2: as examples, see 
Figs. 2 and 3, which represent the data for the 4-state Potts model with 
L = 16, 32 and L = 256, respectively. So it makes sense to extract estimates 
of rr from the tail of the autocorrelation function. More precisely, for 
each run we estimated rexp, 8 by fitting log p6~( t )= - - A -  Bt for the inter- 
val tmi, ~< t ~< t ..... ; obviously r~.,p, ~ = lIB. By studying the goodness of fit 
(i.e., the X 2 value and the corresponding confidence level) as a function of 
tmi n a n d  tma x we can choose the "best" fit. 

This fit is, however, extremely subtle, because the Monte Carlo 
estimates of pe, er(t) for different t are in general (highly) correlated. The 
full covariance matrix d'~, for these random variables can in principle be 

"-~ 0.1 
o. 

4 - S l a t e  P o t [ s  Model A u [ o c o r r e l a L i o n  F u n c [ i o n  
1 " ,  I I I p F I i I I i j 

E 
I 

0.01 L~ 
0 

' ' r  . . . .  i 

L=256  

1 2 3 
t/"rint,Z 

Fig. 3. The same as in Fig. 2. forL=256. 
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computed using the autocorrelation function itself, at least in the 
approximation that neglects the fourth cumulant of the stochastic process: 
see Eq. (B.1) in Appendix B. If one assumes for simplicity that the 
autocorrelation function is a pure exponential, then the formula simplifies 
further: see Eq. (B.2). From this formula we already see that the off- 
diagonal terms in ~p are comparable in magnitude to the diagonal ones; 
therefore, it is unlikely to be sensible to neglect them. 

Nevertheless, one may try the crude approximation in which all off- 
diagonal terms in ~'p are dropped and see what happens. Using the self- 
consistent procedure explained in detail in Appendix B, we obtained both 
an estimate of rexp, ~ (along with its error bar) and the error bars for the 
autocorrelation function p~,~(t). For almost all values of/'rain and t . . . .  we 
obtained a perfect fit (confidence level ~100%),  with values of the X-' 
much smaller than the number of degrees of freedom. However, the varia- 
tion of the estimates of re.~p, r as a function of tmi n and /max was much larger 

Table XVIII.  Values" of Texp. a. for the 4-State Potts Model ,  using tmax=4T in t .  8 
(Actual ly,  the Nearest Integer to 4Tint,~), and Various Values of tmi n 

L =  16, L = 3 2 ,  L = 6 4 ,  L =  128, L =256, L=512 ,  
tmi, t .... = 52 /max = 92 /max = 164 t,,,a x = 320 tma x = 560 /max = 1012 

1 12.32+0.07 20.56+0.10 35.21+0.14 65.37-t-0.41 125.35+0.95 
312.84, 50 1315.1, 90 5411.0, 162 7266.9, 318 11584, 558 
10 -39 10 -216 6 X20 -t~176 2 X 10 -1296 2x  10 -2030 

0.5rint. ~. 13.43+0.12 23.62+0.21 42.99+0.32 N O C O N V  N O C O N V  N O C O N V  
48.84,45 111.17,79 148.32, 142 
32% 1% 34% 

ri,,, ~ 13.69_0.21 24.33 +0.34 45.01 +0.54 100.1 +2.0 NO CONV 334+ 10 
31.24, 38 82.06, 68 130.94, 122 193.13, 239 96.08, 758 
77% 12% 27% 99% 100% 

1.5rint. ~ 13.62+0.32 25.72+0.61 45.99+0.91 105.6+3.6 185.3+8.3 324+14 
25.66, 32 57.99, 56 100.26, 101 113.74, 199 86.47, 349 52.06, 631 
77% 40% 50% 100% 100% 100% 

2 rint. ~ 13.57+0.55 26.7+1.0 51.0+1.5 112.8+6.4 232--+19 329-+24 
17.98, 25 40.33, 45 91.85, 122 65.00, 159 43.11,279 31.42, 505 
84% - 67% 98% 100% 100% 100% 

o The first line of each entry is the estimate of rcxp. 8 and the corresponding error bar; the 
second line is the Z 2 value of the fit and the number of degrees of freedom (DF); the third 
line is the confidence level. For each lattice size L we have used as train the integer nearest 
to the value shown in the first column. Those fits where our self-consistent process dit not 
converge are marked NO CONV. The fit for L = 5 1 2  and tm~, = 1 has not been performed, 
as it is very memory-consuming and it is expected to be rather poor. 

822/85/3-4-4 
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t h a n  the e r ro r  ba r s  g iven  by  the  fit. Th i s  ind ica tes  tha t  the  e r ro r  b a r  for the  
e s t ima ted  rexp. ~ was  n o t  correc t ly  c o m p u t e d .  Clear ly ,  the neglect  of  the  off- 
d i a g o n a l  cova r i ances  is unjus t i f ied ,  as we a l r eady  expected  o n  theore t ica l  
g rounds .  

We  therefore  redid  the fit u s ing  the full c o v a r i a n c e  m a t r i x  ~'~,, aga in  
us ing  the  se l f -cons is tent  p r o c e d u r e  descr ibed  in  A p p e n d i x  B. As before,  we 

sys temat ica l ly  var ied  tmin a n d  /max- T h e  d e p e n d e n c e  of  the resul ts  o n  tma x 
is usua l ly  sl ight;  b u t  the  d e p e n d e n c e  o n  /min is m o d e r a t e l y  s t rong.  W e  
repor t  o u r  resul ts  in Tab le s  X V I I I  a n d  XIX for the 4-s ta te  P o t t s  mode l ,  "-9 
in Tab le s  XX a n d  XXI  for the X2 mode l ,  a n d  in  Tab les  X X I I  a n d  XXII I ,  
for the Z F  model .  F o r  each m o d e l  we p resen t  two different  tables ,  one  wi th  

t,,,ax = 4 Tint. d;" a n d  the o the r  wi th  tma x = 3 tint. ~-. 
In  all  cases we have  a b a d  fit (level ,~ 1 % )  w h e n e v e r  /min '~0.5  ~'int. ,e 

( this  h a p p e n s  i r respect ive of  the va lue  of  tmax). As a n  example  of  such a bad  
fit, we show in  each the fit wi th  tmi, = 1. Clear ly ,  the ene rgy  a u t o c o r r e l a t i o n  
func t ion  is s igni f icant ly  different f rom a pu re  e x p o n e n t i a l  for very  smal l  t. 
However ,  we o b t a i n  r e a s o n a b l e  Z 2 va lues  as s o o n  as tmi, > 0 . 5  Tint, ~, 
i nd i ca t i ng  tha t  the a u t o c o r r e l a t i o n  func t i on  becomes  very  close to a pu re  

e x p o n e n t i a l  for t > 0.5 2"int, 6". 

Table XlX. Values of Texp, a for the 4-State Potts Model, Using t m a x = 3 T i n t ,  z 
(More Precisely, the Nearest Integer to That Value)" 

L= 16, L=32, L=64, L =  128, L = 256 ,  L=512, 
tm~, tm,~ = 39 t .... = 69 t .... = 123 tmax = 240 t .... = 420 t .... = 759 

I 12.31+0.07 20.48+0.10 35.08+0.14 63.24+0.40 114.48+0.93 
301.70, 37 1239.0, 67 5269.0, 121 6390.1, 238 8987.9, 418 
3XI0 -43 3 X 10---'15 2 X 10--re-'t) 2 X 10-1169 5 X 10--1586 

0.5"Cint, ~- 13.40+0.12 23.44+0.20 42.70+0.32 89.5+1.1 NOCONV NOCONV 
42.82, 32 75.97, 56 107.2, 101 404.50, 199 
10% 4% 320/0 4 x  l 0  - 1 6  

13.63+0.21 23.95+0.34 44.28+0.54 94.0+2.0 163.9_+4.6 329+ 12 
25.55, 25 50.84, 45 85.97, 81 156.5, 159 125.8, 279 77.82, 503 
43% 25% 33% 54% 100% 100% 

13.50+0.32 24.88+0.59 44.46+0.88 97.0+3.5 164.1+_7.6 314+18 
20.41, 19 31.04, 33 58.50, 60 88.59, 119 63.83,209 43.11,376 
37% 56% 53% 98% 100% 100% 

13.30_+0.54 25.10_+0.94 45.4+_1.4 101.8+_6.0 194+_17  313+31 
12.18, 12 16.30, 22 43.52, 40 57.22, 79 36.46, 139 27.20, 250 
43% 80% 32% 97% 100% 100% 

Tint, ~" 

1 .5  "( in t, ,'r 

2 ~'int. & 

"Notation as in Table XVIII. 

29 The results for L = 1024 have not been quoted, as the statistic is rather poor ( ~ 1500 rim . ,~). 
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F o r  the  4-s ta te  P o t t s  m o d e l  (Tab l e s  X V I I I  a n d  X I X )  we h a v e  r a t h e r  

s tab le  resul ts  for  L = 16, 32, 64. In  m o s t  o f  these  fits the  con f idence  level 

r e m a i n s  r ea sonab l e ,  so  we t h i n k  we can  fully t rus t  these  results.  H o w e v e r ,  

for L / >  128 we beg in  to  h a v e  difficulties:  the  se l f -cons is ten t  p r o c e d u r e  does  

n o t  a lways  c o n v e r g e ,  and  the  resul ts  wi th  /max ---- 4"Cint. er s o m e t i m e s  differ 

f r o m  those  w i t h  tma x = 3~'int, ~- by  a b o u t  t w o  s t a n d a r d  dev ia t ions .  F u r t h e r -  

more ,  for  these  large  la t t ices  we  cons i s t en t ly  o b t a i n  u n u s u a l l y  h igh  c o n -  

f idence levels  ( m o s t l y  > 9 9 % ) ; .  we do  n o t  u n d e r s t a n d  w h y  this happens ,  

F o r  these  la t t ice  sizes the  t r oub l e s  s eem to be  s o m e w h a t  less severe  w h e n  

t . . . .  = 3r~,t. ~. So  we t end  to  t rus t  be t t e r  these  l a t t e r  fits w h e n  L / >  128. 

F o r  the  X2 m o d e l  (Tab l e s  X X  a n d  X X I )  b o t h  the  s tabi l i ty  o f  the  

resul ts  and  the  g o o d n e s s  o f  fit a re  exce l len t  for  L = 16 and  L =  32. F o r  

L =  64 we  h a v e  bad  fits w h e n  tmax----4rint. ~-,, ( level  < 1 % ) ,  and  s o m e w h a t  

be t t e r  ones  w h e n  t . . . .  = 3tint. ~-  ( level  ~ 8 % ) .  Also  for L = 128 we o b t a i n  

s o m e w h a t  m o r e  s table  a n d  cons i s t en t  resul ts  w h e n  tma x = 3tint, e , .  F o r  

L = 256 the  fits a re  r a t h e r  p o o r e r ;  for  L = 512 they  are  g o o d ,  bu t  the  resul ts  

for  the  two  di f ferent  va lues  o f  t . . . .  differ  by  three  s t a n d a r d  dev ia t ions .  

Table XX. Values" of Texp, ~,= for the X2 Model ,  Using trnax = 4Tint, ~'= 

L =  16, L=32,  L=64,  L =  128, L = 256, L = 512, 
tml, t,,,x = 26 t .... = 37 t,,a~ = 55 tma x = 81 t .... = I 11 tm~.~ = 158 

6.34+0.03 9.11+0.05 13.29+0.08 18.94+0.13 26.45_+0.21 36.86_+0.33 
47.38, 24 150.26, 35 265.08, 53 504.72, 79 727.28, 109 958.10, 156 
0.03%0 3•  -16 6• -3~ 3• -63 4• -92 2• -115 

0.5 rin,.r 6.45-+0.04 9.62-+0.08 14.06+0.13 21.03+0.24 30.61 _.+0.40 NO CONV 
24.46, 22 24.85, 31 80.84, 47 95.18, 70 152.19, 96 
32% 77% 0.2% 2% 2• ]0 -4 

~'int. g',. 

] .5 t ' int. ~ 

2T  Tint. d',. 

6.58+0.07 9.78.+0.12 14.45+0.23 21.74+0.40 33.45+0.70 47.8-+1.2 
17.79, 19 20.36, 27 69.09, 40 78.17, 60 194.72, 72 104.12, 117 
54% 82% 0.3% 6% 3 • 10  - 1 3  90% 

6.68+0.13 9.96+0.21 15.23+0.41 23.14-t-0.73 34.2+1.2 48.0__+1.9 
15.67, 15 14.73, 22 59.35, 33 58.74, 49 78.72, 68 74.83, 98 
400/0 870/0 0.30/0 16~ 18~ 96% 

6.64+0.02 9.77___0.34 16.16+0.67 26.8+1.4 38.3+2.3 48.1+3.3 
9.41, 12 16.30, 22 44.94, 27 37.44, 39 44.37, 54 43.41, 78 
67% 800/0 20/0 540/,, 82% 100% 

" Notation as in Table XVIII. 
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Table XXI. Values" of Texp, ~'w for the X2 Model ,  Using tree x = 3Tint. ~'w 

L = 1 6 ,  L = 3 2 ,  L = 6 4 ,  L =  128, L = 2 5 6 ,  L = 5 1 2 ,  

tmin tma x = 19 /max = 28 /max = 41 /max = 61 /max = 83 tmax = 119 

1 6.34_+0.03 9.10_+0.05 13.23_+0.08 18.72_+0.13 26.09_+0.21 36.09_+0.33 
38.71, 17 141.89, 26 215.92, 39 402.09, 59 624.09, 81 826.07, 117 
0.2% 6 x 1 0  - t s  2 x 1 0  -26 2 x 1 0  -52 9 x 1 0  -~s 4 x  10-1o7 

6.45_+0.04 9.61 _+0.08 13.94_+0.13 20.60_+0.24 29.68_+0.40 41.98_+0.67 
16.62, 15 18.96, 22 44.77, 33 40.85, 50 98.71, 68 86.30, 98 
34% 65% 8% 82% 0.9% 79% 

6.57_+0.07 9.75._+0.12 14.17+0.23 20.80-+0.39 29.82-+0.65 43.7-+1.2 
10.77, 12 14.96, 18 37.19, 26 28.85, 40 79.36, 54 60.62, 78 
55% 66% 7% 90% 1% 93% 

6.64_+0.13 9.89+0.21 14.59_+0.39 21.09_+0.68 31.1_+1.1 42.3_+1.8 
8.90, 8 9.82, 13 28.89, 19 19.59, 29 50.02, 40 46.00, 59 
35% 71% 7% 91% 13% 89% 

6.56-+0.20 9.63_+0.34 15.08_+0.62 22.9+1.2  33.5-+2.1 39.9_+2.8 
2.58, 5 8.18, 8 20.69, 13 10.32, 19 27.71, 26 30.36, 39 
76% 42% 8% 94% 37% 84% 

0.5  l"int. 8~ 

T int. r 

1.5 Tint. ~,o 

2r Tint. d'~ 

"Nota t ion  as in Table XVIII. 

T a b l e  XXII. V a l u e s "  o f  Texp ,  8w f o r  t h e  ZF M o d e l ,  U s i n g  tm,x = 4T|nt, # ,  

L = I 6 ,  L = 3 2 ,  L = 6 4 ,  L =  128, L = 2 5 6 ,  L = 5 1 2 ,  
t,~i. tmax = 38 tma x = 64 tin. x = 106 t,,ax = 180 t . . . .  = 306 tma x = 476 

1 9.30+0.05 15.15+0.10 24.39+0.19 40.28+0.37 72.64+0.78 113.5+1.1 
116.93, 36 358.79, 62 667.10, 104 1257.9, 178 2192.6, 304 4274.1, 474 
2 x 10 -6 2 x 10 -23 5 x 10 -42 8 x 10 -82 10 -282 5 x 10 -602 

9.75+0.08 16.64+0.17 28.08+0.36 52.25+0.83 N O C O N V  N O C O N V  
21.77, 32 58.02, 55 124.13, 92 368.20, 156 
91% 36% 1% 3 x  10 -19 

9 .83+0.12 17.22._+0.29 29.81_+0.63 57.9_+1.6 99.71_+3.2 147.1_+4.2 
21.06, 28 48.94, 47 124.72, 79 137.91,134 99.73,229 121.00, 356 
82% 40% 0.08% 39% 100% 100% 

9.85_+0.21 17.80+0.49 31.2_+1.1 60.1_+2.6 104.7_+5.6 160.5_+7.1 
19.65, 23 44.00, 39 85.57, 65 71.20, 111 53.61,190 58.86, 296 
66% 27% 4 %  100% 100% 100% 

10.12_+0.36 18.18_+0.83 35.9_+2.3 63.5_+4.7 114_+10 163_+13 
17.26, 18 39.46, 31 46.99, 52 39.02, 89 25.90, 152 33.66, 237 
51% 14% 67% 100% 100% 100% 

0.5  T int, ~',~ 

Tint. ~,. 

1.5 Tint. ~ 

2r Tint, o',~ 

~ Notation as in Table XVIII. 
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Finally, for the ZF model (Tables XXII and XXIII)  we have good 
stability and goodness of fit for L = 16 and L = 32. For  L = 64 the fits are 
usually very poor  (level < 5-8 %), but they are generally less bad (and also 
more stable) for tma x = 3tint, ,r than for tmax=4"t'int. ~',o' For L~> 128 we 
also find the result tin, • = 3Z'int, d',o, somewhat better than for tma x = 4"tint, ,r 

again we find inexplicably high confidence levels (often >99 %). 
From the above discussion we can already see that we have good and 

stable fits only for the smaller lattices (L ~< 32 and in some cases L = 64), 
where the statistics are better. Apparently, in order to have a decent 
estimate of rexp, ~ we need a run length of at least 6 x 104"t'int, ,6" and possibly 
more. 

To decide which are the "best" fits we use the following criteria: we 
choose the largest interval [train, /max] such that 

(a) The Z 2 value is reasonable (e.g., confidence level > 10%). 

(b) And there is some consistency (within error bars) with the values 
coming from "nearby" choices of tmin and /max" 

Table XXIII. Values ~ of Texp,~r ~ for the ZF Model ,  Using tmax=3Tint, g. 

L = I 6 ,  " L = 3 2 ,  L=64 ,  L =  128, L = 256, L=512 ,  
t~.i. tm~ = 28 /max = 48 tm~.~ = 79 t ..... = 135 t,..~ = 229 t~.~.~ = 357 

0.5  Tint, d'~ 

Tint. d',~ 

1.5 Tint. ~ 

2T Tinl. ~ 

9.29+0.05 15.10-1-0.10 24.14+0.19 38.93___0.37 67.49+0.79 107.5+1.1 
99.77, 26 327.13, 46 579.33, 77 1020.9, 133 1692.7, 227 3642.5, 355 
10 -10 5 x 10 -44 5 x 10 -78 8 X ] 0  -137 3 X 10 -222 10 -537 

9.72+0.08 16.55+0.17 27.54+0.36 50.57+0.86 N O C O N V  139.5+2.6 
9.15,22 41.27, 39 81.69,65 314.16, 111 213.48, 296 
99% 37% 8% 3 x I0 -21 100% 

9.78+0.12 17.01+0.29 28.17+0.60 51.7+1.5 93.9+3.5 137.6+4.2 
8.74, 18 34.29, 31 69.80, 52 81.87, 89 91.88, 152 101.06, 237 
970/0 31% 50/0 690/0 100% 100% 

9.72+0.21 17.36+0.48 28.8 + 1.1 51.8+2.5 93.9+5.8 148.0+8.0 
7.37, 13 29.87, 23 53.00, 38 47.82, 66 43.53, I 13 50.63, 177 
88%- 15~ 50/~ 960/0 100% 100% 

9.84+0.35 17.24+0.79 31.6+2.0 52.3+4.3 100 +__ 10 145+13 
5.54, 8 26.92, 15 29.63, 25 31.20, 44 24.34, 75 32.14, 118 
70 % 3 % 24% 93 % 100% 100% 

"Notat ion as in Table XVIII. 
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Table XXlV. 

Salas and Sokal 

Ratios Ttm" z/Texp, z f o r  the  Three Mode ls  Considered 
in This Paper ~ 

4-state Potts model ZF model X2 model 

tram /m~l~ Tinl. g//reXlp. ,l" train tin,ix "l" inl. B~/'f r 8,o Imln /max rinl. g~ /rexp. ~" 

16 ~r,.,. x 4ri.,. ~ 0.96_+0.03 �89 4ri.~.~,. 0.97_+0.02 �89162 4ri.,.,~,o 0.99_+0.02 
32 r.,,.~ 4r,.,. x 0.95_+0.04 �89 ~ 4ri.,,~, ~ 0.96+0.03 �89 ~ 4rin,.<o 0.97+0.02 
64 ri.,..~ 4ri... x 0.92_+0.02 �89 3r~.,..,,. 0.96_+0.04 ~ri.,.<o 3r....,~, 0.98+0.03 

128 L...,~ 3r,..,~ 0.84_+0.04 ri.,.e,,, 3ti.,.,r 0.87+0.06 �89 3ri.,~.,~," 0.99_+0.03 
256 L....~ 3ri.,.,~ 0.87_+0.05 ri....~,~ 3ri.,.~. ~ 0.81_+0.07 �89 3ri.,.x," 0.94+0.06 
512 L...,~ 3r...,~ 0.77+0.06 �89 3ri.,.,~ ~ 0.85+0.05 �89 3ri...~r,~ 0.94_+0.05 

" For  each lattice size L we give the ratio and the interval ft . ,m, t . . . .  ] used for its computa-  
tion. 

In Table XXIV we present what we consider to be the "best" fits for 
each model and each lattice size L. We include the interval [tm~ . ,  t ..... ] and 
the ratio v~nt, e,/rCxp, ~. The error bar on this ratio was computed using the 
triangle inequality, as we do not know the covariance between our 
estimates of vi,t.,~ and rexp,,r. We think these estimates are reasonably 
reliable for L =  16 and 32, somewhat reliable for L = 6 4 ,  and possibly 
unreliable for L >/128. 

From Table XXIV we see that for each model, the values of the ratio 
r~,. ,~/r~.~p. ~ are more or less constant when L ~< 64. If we fit the ratios for 
16 ~< L ~< 64 to a constant, we obtain reasonable fits for the three models: 
rim, d/rexp, er =0.936 +0.015 for the 4-state Potts model (,g'-= 1.50, 2 DF, 
l e v e l = 4 7 % ) ,  rint.~,o/rexp.~,o=0.966+O.O15 for the ZF  model (Z-'=0.10, 
2 DF, l eve l=95%}  and rim. 8,o/rexp. 6, = 0.980 _+ 0.013 for the 1`2 model 
( i '2=0.50, 2 DF, level= 78%). However, for the 4-state Potts and ZF 
models, this ratio seems to decrease when L >~ 128. Now, these points are 
precisely those where we had trouble obtaining the value of r~xp. ~, so this 
decrease might be due simply to a poor  determination of the exponential 
autocorrelation time; and it is in any case only about two standard devia- 
tions. 3~ On the other hand, this decrease might indicate that r~m. ~/rcxp. ~ is 
tending to zero as L --, oo; in this case the dynamic critical exponents z~m. ,~ 
and Z,xp. ~ would be different (the latter would be larger), and the exponent 
p e  in (4.61) would be strictly positive. 

~() If we fit all the data ( 16 ~< L ~< 512), we get the following ratios: r~.t, e / r~p.  ~r = 0.914 + 0.013 
for the 4-state Potts model  (X-" = 13.84. 5 DF.  level = 2 % )  and tint. ,r g~ = 0.945 + 0.014 
for the ZF  model (Z-'= 10.84, 5 DF,  level = 5 % ) .  These confidence levels on the order  or  
of 5 % are as expected from the two-standard-deviat ion discrepancies. 
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The result for the X2 model, by contrast, is completely consistent with 
a constant ratio tint. e,o/rexp.  ~,~, indicating that P e,o = 0. This fit to a con- 
stant, using all the data (16 ~<L~<512), gives 

rim. ~ (X2)  = 0.976 _+ 0.011 (4.64) 
Z'exp, ,6"~o 

with X2=2.14 (5 DF, level= 83%). 
Due to the ambiguities in the determination of rexp, ~ for L ~> 128 in all 

the models, we are unable to come to any definitive conclusion on whether 
ziot, e = zr ~. But it does seem likely. 

5. C O N C L U S I O N S  

We have performed a high-precision Monte Carlo study of the sym- 
metric Ashkin-Teller model at several points on the self-dual (critical) 
curve, using a Swendsen-Wang-type algorithm. We have considered both 
the static behavior of the models (known exactly) and the dynamic 
behavior of the algorithm. 

We have had great difficulties in obtaining the correct leading 
behavior whenever this is not simply a power law plus additive power-law 
corrections. These difficulties occurred both for static quantities (specific 
heat in the Ising and 4-state Potts models) and for dynamic quantities 
(autocorrelation times in all models). Unless we have some theoretical 
input, it is almost impossible to distinguish between power-law and 
logarithmic behaviors when the range of lattice sizes L is not extremely 
large (in our case, 16 ~< L <~ 1024). 

This issue makes it very problematic to tell whether the Li-Sokal 
bound (1.1)/(1.2) is sharp or not. Our results seem to indicate that there 
are only two likely scenarios: the Li-Sokal bound fails to be sharp either 
by a small power (i.e., rim. ,~/CH "~ALp with 0.05 ~ p  50.12) or by only a 
logarithm (e.g., tint. e / C H ' ~ A  + B l o g L ) .  Either one of these scenarios is 
consistent with our data at all four points on the AT self-dual curve. Larger 
lattices and much better statistics will be needed to distinguish between them. 

We have also presented a new method for estimating the exponential 
autocorrelati~n time, which takes into account the full covariance matrix 
for the sample autocorrelation function. To do so is essential to obtain 
reliable results, as the values of the sample autocorrelation function are 
strongly positively correlated. The quality of the estimates of re.~p, 
depends strongly on the accuracy of the available data: we seem to 
get reliable estimates of rexp, ~- only when the run length is at least 

60000tint. e' . 
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APPENDIX A. PROOF OFLI -SOKAL BOUND FOR THE 
DIRECT ASHKIN-TELLER ALGORITHM 

We can easily extend the proof of the Li-Sokal bound for the q-state 
Potts models t9) to the direct algorithm for the AT model (defined in Sec- 
tion 3.1). Also in this latter case, the transition matrix can be written as a 
product 

Psw = Pbond Pspin (A.I) 

where Pbond (the update of the bond variables) and P~p~, (the update of the 
spin variables) are given by the conditional expectation operators 
E(. [ {~, r}) and E(. [ {m, n} ), respectively. 

As in ref. 9 we are going to compute explicitly the autocorrelation 
function at time lags 0 and 1 for several bond densities. Then, using some 
general properties of reversible Markov chains, we will deduce lower 
bounds for the autocorrelation times ri,t.A (for certain observables A) 
and r~xp. These will in turn imply lower bounds on the dynamic critical 
exponents Zint, A and Zex p. 

Let us consider the bond occupations 3~ 

Jr  ~ m,:v (A.2a) 
(x.v) 

Y =  ~ n,.y (A.2b) 
(,x'v) 

(9= ~. m,.yn.,.y (A.2c) 
<xv> 

We will follow the notation of ref. 9 and henceforth write the Kronecker 
deltas for a bond b =  ( x y )  as 6,,~=6,,,.,~ and ~=~ , .~ , . .  

From (3.6) we can read off the expectation value of the bond variable 
mb conditional on the spin configuration {tr, r}: it is 

E(mb[ {tr, r} )=q16~=(pl q- p2) ~,rb (A.3) 

where q~, p~ and P2 are the probabilities appearing in steps la and lb of 
the direct algorithm (Section 3.1). 32 The important fact here is that 

s~ Do not confuse t h i s . / /  with a magnetization! 
s2 In this appendix we are assuming that the system is homogeneous,  i.e., that the couplings 

J, J', and K do not vary from bond to bond. An inhomogeneous system can be treated by 
an obvious generalization. 



Swendsen-Wang-Type Algorithm for Ashkin-Teller Model 353 

q~ = Pl + P2: this means that E(mb[ {~r, ~}) does not depend on the v con- 
figuration. Likewise we have 

E(nb I{~, ~}) = rla~b = (p, + ps) fi~ (A.4a) 

(A.4b) 

The other conditional probabilities we need are 

(q26~.6~, 
E(mbrnb, [{g, ~}) = ( ql6~, h 

E(rlbll b, {O', Z'})= I r}a~fi~b' 
( rl fi~h 

E(mbnbmb, 

E(mbnbmb, 

E(mbnbmb, nb, 

if b r  
(A.5a) 

if b=b '  

if b q:b' 
(A.5b) 

if b=b '  

{ty, r} )=Iqlr l f~h6~,  if b ~ b '  
(pltr~hf~b if b=b '  (A.5c) 

~plql~a~h~h,  if b ~ b '  
{~ r} )-- (p~ 6~fi~b if b=b '  (A.5d) 

~ p j r l c~ ~h fi ~ ~ ~b, if b v~ b ' 
{O"'C})=(p~fobt~ if b=b '  (A.5e) 

{G,r})=ip~a=~a~a=~,a~ ~, if b4:b' 
(p l  ~h~b  if b=b '  (A.5f) 

These simply reflect the fact that in step 1 each bond is updated independ- 
ently of each other bond. 

From (A.3) and (A.5a) it is easy to compute the mean values ( J r  
and (s/g2),  and hence var (s /g ) -  (J/g'-) - (s/g)2: 

(,//g) -2- V q~ (1 +E~)  (A.6a) 

q~ 
( j / 2 ) = . ~ _ _ ( 8 ] ) + q ; V 2 ( l + 2 E ~ ) + q ~ ( l _ q ~ ) V ( l + g ~ )  (A.6b) 

var(2#) = 2V CH,~ + ql(1 - -q l ) (1  +E~)  (A.6c) 
2 

where E . = ( 1 / 2 V ) ( g . )  is one of the energies defined in Section 4.2, and 
Cg, . .  ---- (1/2 V) va r (~)  is the corresponding specific heat. The unnor- 
malized autocorrelation function of J /  at time lag 0 is precisely 
C/~.~A0) = var(J t) .  
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The corresponding autocorrelation function at time lag 1 is given by 

C. ~.~ ( 1 ) = ( J / ( 0 )  J / (  1 ) ) - ( J / )  -~ = var(E(J/[  { ar  } ) ) = var(ebo~d ,//r 

(A.7) 

Now, the energylike operator Pbo,,dJ# is equal to 

This implies that 

q l  Pbo.~J/  -- E( J /  I {at}) = ~ - ( 2 V +  d~) 

q2 2 

C . / / . H ( I ) = 4  v a r ( # . ) = 2 V ~  C . , . .  

(A.8) 

(A.9) 

Thus, the normalized autocorrelation function for the operator ~ at time 
lag 1 is given by 

P.u.H(1) 
C.//.a(1) 2(1 - q l ) (  1 + E , )  
- - - I -  (A.IO) 
C.//.//(O) q , C H . ~ + 2 ( l - q t ) ( l + E , )  

Note now that when we approach any point on the critical curve, the 
quantity q~ = - e  -2~s+x) remains positive and less than 1 [i.e., 
q~ ~ q L c r ,  ~(0, 1)] while the energy E~ remains greater than - 1  [i.e., 
E~ ~ E . . . .  it > - 1 ]. It follows that 

const 
pj/ .a(1) >~ 1 - - -  (A.11) 

C11. era 

uniformly in a neighborhood of that critical point. 
The rest of the argument given in ref. 9 can now be transcribed 

verbatim. The correlation functions o f . s  under Psw are the same as under 
the positive-semidefinite self-adjoint operator P~w =Psp~nPbo,dPspm. This 
fact implies that we have a spectral representation 

I 

P.H,t/(t) =Io 2 I'1 dr(2) (A.12) 

with a positive measure dv. From this equation we conclude that 

p.a.//( t ) >1 p.//.#( 1 )1~ (A.13) 

Using the definition (4.3) of the integrated autocorrelation time and the 
definition (4.4) of the exponential autocorrelation time, we arrive at the 
following bounds: 
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1 1 + p . a j t ( 1 )  
) >~ const x C~ /Tint' " / (  ~ 2  1 -- P.aJt( I ' ~  (A.14a) 

- I  
r~xp, .a ~> ~iog P.r ~/( 1 ) ~> const x C/t. ,~ (A. 14b) 

Let us now assume that the autocorrelation times diverge (for a finite 
system of size L at criticality) as L -~"'. ." and L -~'p. .", respectively, and that 
the matrix element CH, ~ of the specific-heat matrix diverges as L ~/'. We 
then conclude that 

0( 
- ~ / > -  ( A . 1 5 )  "~ int, . / / ,  ~ exp, . / /  

V 

which is the result of ref. 9. 
The only way that the bound (A.15) could fail is in case the matrix ele- 

ment CH, ~ fails to diverge as L ~/v (e.g., by diverging with a smaller power 
or by being bounded). Now, the matrix ( ~  does have an exactly marginal 
eigenvalue everywhere on the self-dual curve (2.8) of the symmetric AT 
model, so that the component of 6", tangent to this self-dual curve 
(namely, C , ,  rain) is bounded as L ~ o .  33 However, this marginal direction 
is never exactly or, so the preceding proof does in fact always succeed: CH. ~ 
does always diverge as L ~/~. Nevertheless, some extra generality--as well as 
slightly sharper c o n s t a n t s  in the lower bound (A.14b) on r~xp--Can be 
obtained by choosing in place of ._/# a more general bond observable 

~ = C l J//[ -~ C 2 ,/V" -~- r 3 (~ (A.16) 

where c t , c2, and c3 are arbitrary real constants. This case trivially includes 
the preceding one. Using the techniques described above and after some 
algebra, we arrive at the following results 

( .~ ')  = 2 V I ~  (1 + E~) + ~ 2  (1 

C.,c.oc (0) = 2 V( CI t"  Pbond ?g Pbond .U -~= ~ ?/" ) 

C.~r.~c( 1 ). = 2 V C  I~. ebo~ .Jr Pbo,J.~r 

L'.~- 
P.r.~'( 1 ) = 1 

C ~t ' Pbond Jl- Pbond.~" 71- E ?[ 

+ E ~ ) + ~ ( I + E r ) ]  (A.17a) 

(A.17b) 

(A.17c) 

(A.17d) 

33 More generally, in the nonsymmetric AT model on the self-dual manifold (2.7), there are 
two marginal eigenvalues, corresponding to the two tangent vectors to (2.7). 
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where we have defined the following quantities: 

Er=E~ + E~+ E~ (A.18a) 

,%on~ ~ r = E ( ~ I  { ~r} ) 

a "l- T ar 

v2Clrl + 2c,_ql +c3pj + 2 (A.18b) 
4 

1 
Cu. &o,d .'*vbo,0.~r = ~ var( Pbond .~c ) (A. 18c ) 

E.~r c~r~(1 - r~) ( l+Eo+c~-q~(1 -q l ) ( l+E. )  
2 2 

1 + E r  ~ 
+ ~ [c~ P1(1 -- Pt) + 2c, c2(pl -- q'i) 

+2ClC3pl(1 --rl)+2C._C3pl(l - -q l ) ]  (A. 18d) 

and the rest of the observable quantities are defined in Section 4. 
Using the parameters (c~,ez, c3), we can choose the energylike 

operator Pbond.~" in such a way that it contains a nonzero projection on the 
most divergent eigenvector of the matrix C't~. This is always possible, as we 
have enough freedom. On the other hand, the term ~7.~ r should be bounded 
from below by a strictly positive number. 

Let us analyze an interesting particular case: the symmetric model 
(r~ =q~) on the self-dual curve. The natural choice is c~ =c_~ and the pre- 
vious formulas can be simplified to 

P b o o d ? s  --J-) (A.19a) 

E'..c = c~q~(1 -- ql)(1 +E.,) 

+ ~ - Z [ c ~ p , ( 1 - - p ~ ) + 4 c , c 3 p , ( 1  --q,) + Zc~(p, --q~) ] 
(A.19b) 

We can choose any ratio c3/c~ such that Pbond,~' is not a multiple of 
Y'.,in=d~o+ag~, where a is the parameter defined in (4.26). This means 
that on the self-dual curve the ratio c3/c ~ could be anything different from 
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--�89 sinh 2J. In particular, we can make the choice (c~, C3)= (1, 0), leading 
to P b o n d ~  r = 2qt ~o + const and to the bound 

P,~.or( 1 ) = 1 (A.20a) 
q~ C/t, o~o~ + J ~  

- . P l - - q ~  E~-=q~(1 --q~)(1 +Eo~) + ~ ( I  + E r )  (A.20b) 

Let us now restrict attention to the part of the self-dual curve for which the 
specific heat is divergent, namely the interval between the decoupled Ising 
point (Dis) and the 4-state Potts point (P). In this interval we have J, 
K~> 0, so Griffith first inequality implies that the energies E~o and E~  are 
>~0 (and hence so is Er). Moreover, both q~ and Pl-q~  are strictly 
positive on this interval. Since the specific heat Cn.,o~o is divergent 
everywhere on this interval, the proof of the bound (1.2) is complete. 

APPENDIX  B. FITTING (H IGHLY CORRELATED)  
A U T O C O R R E L A T I O N  F U N C T I O N S  

Let r be the normalized sample autocorrelation function for some 
particular observable, measured in a Monte Carlo run of length N. These 
measured values {/~(t)} ~_-2,N_ l, are of course random variables; as such 
they have a covariance matrix ~p, which is given by a standard formula 
from time-series analysis: ~53) 

cov[ r ] 

1 +~ 
= ~  ~ [P(m)p(m+r-s)+p(m+s)p(m-r)+2p(r)p(s )p(m)  2 

--2p(r)p(n,i)p(n,~--s)--2p(s)p(m)p(m--r)]df-O(~_) (B,1) 

where {p(t)} are the true values of the autocorrelation function. This 
formula is valid in the limit N--* o0, provided that the stochastic process is 
Gaussian. [If  the process is not Gaussian, then we have to include also 
terms proportional to the fourth cumulant x4(m, r, r-s) .]  In our case the 
stochastic process is of course not Gaussian, but we may hope that it is 
"not too far from Gaussian." So let us for simplicity take formula (B.1) as 
correct. 
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The qualitative import of (B.1) can be understood by examining the 
special case of a pure exponential decay p(t)=e -I'1/~. In this case (B.1) 
reduces to 

l I ( cov[/~(r),/~(s)] = ~  e -i  . . . .  .i/T Ir-s l  + 1 --e-2/------SJ 

( l+e-2/~]jj (N--5_) - e  -~r+sl/* r + s + ~ , ,  +O (B.2) 
l - e  

We thus see that the off-diagonal terms in 6", (i.e., r # s )  are comparable 
in magnitude to the diagonal ones ( r=s ) .  In other words, the sample 
autocorrelations /~(t) for different time lags t are strongly positively 
correlated, and any valid analysis method must take proper account of this 
correlation. 34 

Our Ansatz for the autocorrelation function p(t) will be the following: 

~'~(t) for 0 ~ t < lmi n 
P(t)=~Ae-'mxp for t>~tmi n (B.3a) 

p(t) = p ( - - t )  (B.3b) 

where j0(t) is the autocorrelation function at time lag t measured in the 
Monte Carlo simulation, and rex p will be chosen by least-squares fitting 
(see below); here tmi . is some chosen cut point, to take account of the fact 
that the behavior of p(t) for small t need not be exponential. Now, for each 
tmi . we can compute explicitly the sums appearing in (B.1) when p(t) is 
given by (B.3). Indeed, all the terms in (B.1) can be written in terms ofp( t )  
and its convolution 

/l(s)=_ y' p(m) p ( m - s )  (B.4) 
n t  = - -  ,zt~ 

The sum (B.4) can be split into two pieces: one piece contains only p(t)'s 
with t >i tmi,, and the other piece contains the rest. The first piece can be 
summed exactly, giving the result 

s + train - -  1 

l~(s) = ~ p(m) p(m - s) 
m =  | 

s +  train - -  I e - - (2 t rn in  + s ) / rexp  

+ ~ p ( m ) p ( m - s ) + 2 A  2 l_e_Z/~o~p (B.5) 
t l l  = s 

~A similar problem arises in fitting the spatial correlation function to an asymptotic 
exponential decay in order to extract the mass gapJ 57) 
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Thus, given {/~(t)}, train, A, and rexp, we can compute the covariance 
matrix r given by (B.1). With this matrix, we can perform the standard 
weighted least-squares fit IsSI to l o g p ( t ) = a + b t  for the interval 
tmin<~t<<.tm~x and obtain new estimates for A=e"  and r~xp = - 1 / b .  We 
iterate this process until we reach a fixed point for which the input and out- 
put values of A and v~x p are equal. In practice, we initialized this self-con- 
sistent process by supposing that p(t) = exp( -[tI/rex p)l~ with 

z . ( O )  _ _  2 Z ' i n  t - 1 
exo- - l ~  2-~i~t+ 1 (B.6) 

Here the value of -c~.t is of course our estimate from the Monte Carlo 
simulation, using the usual self-consistent truncation window of width 6ri, t 
(ref. 54, Appendix C). We followed this procedure both for the fits with the 
full covariance matrix and for those with only a diagonal covariance 
matrix. 

This procedure was implemented using Mathematica, which allowed 
us to control accurately the numerical precision of the calculation. This is 
especially important when inverting the full covariance matrix, as in some 
cases we obtained nearly singular matrices. In practice, this method con- 
verges well for the smaller lattices (the number of iterations needed is 
usually < 10). However, when the data are sufficiently poor (run length 
~<60000 tint) , we noticed some cases of cyclic behavior instead of con- 

vergence to a single fixed point. This appears to happen when, due to a 
statistical fluctuation, the sample autocorrelation function/i(t) has a sharp 
bend somewhere in its tail. 
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NOTE ADDED IN PROOF 

After the completion of this work we have realized that the correct 
leading term for the susceptibility of the critical 4-state Potts model is not 
X ~ L7/4, but rather 

X ~ L7/4 log - 1/8 L 

This result follows by using the techniques of ref. 59; the details will be pub- 
lished elsewhere. r176 This logarithm might explain the fact that our Monte 
Carlo estimate (4.27) is slightly below the expected result 7/4. A more 
detailed numerical test of these logarithmic factors will be published else- 
w he re. ~ 60 ) 

REFERENCES 

I. A. D. Sokal, Monte Carlo methods in statistical mechanics: Foundations and new algo- 
rithms, Cours de Troisi+me Cycle de la Physique en Suisse Romande, Lausanne, 
Switzerland (June 1989). 

2. S. L. Adler, Nuel. Phys. B (Proc. SuppL) 9:437 (1989). 
3. U. Wolff, Nucl. Phys. B (Proc. Suppl.) 17:93 (1990). 
4. A. D. Sokal, Nucl. Phys. B (Proe. Suppl.) 20:55 (1991). 
5. R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58:86 (1987). 
6. C. F. Baillie and P. D. Coddington, Phys. Rev. B 43:10617 (1991). 
7. C. F. Baillie and P. D. Coddington, Phys. Rev. Lett. 68:962 (1992); and private com- 

munication. 
8. D. W. Heermann and A. N. Burkitt, Physica A 162:210 (1990). 
9. X.-J. Li and A. D. Sokal, Phys. Rev. Lett. 63:827 (1989). 

10. W. Klein, T. Ray and P. Tamayo, Phys. Rev. Lett. 63:827 (1989). 
11. T. Ray, P. Tamayo, and W. Klein, Phys. Rev. A 39, 5949 (1989). 
12. U. Wolff, Phys. Rev. Lett. 62:361 (1989). 
13. P. Tamayo, R. C. Brower, and W. Klein, J. Stat. Phys. 58:1083 (1990). 
14. S. Alexander, Phys. Lett. A 54:353 (1975). 
15. E. Domany and E. K. Riedel, J. AppL Phys. 49:1315 (1978). 
16. M. Nauenberg and D. J. Scalapino, Phys. Rev. Lett. 44:837 (1980). 
17. J. L. Cardy, M. Nauenberg, and D. J. Scalapino, Phys. Rev. B 22:2560 (1980). 
18. J. L. Black and V. J. Emery, Phys. Rev. B 23:429 (1981). 
19. U. Wolff, Phys. Lett. B 228:379 (1989). 
20. J.-S. Wang, Physica A 164:240 (1990). 
21. J. C. Le Guillou and J. Zinn-Justin, J. Phys. France 50:1365 (1989). 
22. B. G. Nickel, Physica A 177:189 (1991). 
23. J. Ashkin and J. Teller, Phys. Rev. 64:178 (1943). 
24. S. Wiseman and E. Domany, Phys. Rev. E 48:4080 (1993). 
25. L. Laanait, N. Masaif, and J. Ruiz, J. Stat. Phys. 72:721 (1993). 
26. R. V. Ditzian, J. R. Banavar, G. S. Grest, and L. P. Kadanof, Phys. Rev. B 22:2542 (1980). 
27. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, New York, 

1982). 
28. H. J. F. Knops, J. Phys. A: Math. Gen. 8:1508 (1975). 
29. S. J. Ferreira and A. D. Sokal, Phys. Rev. B 51:6727 (1995). 



Swendsen-Wang-Type Algorithm for Ashkin-Teller Model 361 

30. F. 
31. F. 
32. A. 
33. R. 
34. A. 
35. R. 
36. L 

Y. Wu and Y. K. Wang, J. Math. Phys. 17:439 (1976). 
Y. Wu, J. Math. Phys. 18:611 (1977). 
van Enter, R. Fernhndez, and A. D. Sokal, unpublished. 
J. Baxter, Proc. Roy. Soc. Lond. A 383:43 (1982). 
Lenard, cited in E. H. Lieb, Phys. Re~,. 162:162 (1967), pp. 169, 170. 
J. Baxter, J. Math. Phys. 11:3116 (1970). 
P. Kadanoff and A. C. Brown, Ann. Phys. (NY) 121:318 (1979). 

37. C. Pfister, Cammun. Math. Phys. 29:113 (1982). 
38. J. M. Maillard, P. Rujan, and T. T. Truong, J. Phys. A: Math. Gen. 18:3399 (1985). 
39. A. Benyoussef, L. Laanait, and M. Loulidi, J. Stat. Phys. 74:1185 (1994). 
40. A. C. D. van Enter, R. Fern~indez, and A. D. Sokal, J. Stat. Phys. 72:879 (1993). 
41. M. P. M. den Nijs, J. Phys A. Math. Gen. 12:1857 (1979). 
42. H. J. F. Knops, Ann. Phys. (NY) 128:448 (1980). 
43. H. Saleur, J. Stat. Phys. 50:475 (1988). 
44. S.-K. Yang, Nucl. Phys. B 285[FS19]:183 (1987). 
45. A. B. Zamolodchikov and V. A. Fateev, Sac. Phys. JETP 62:215 (1985). 
46. H. N. V. Temperley and S. Ashley, Proc. Roy. Soc. Lond. A 265:371 (1979). 
47. R. G. Edwards and A. D. Sokal, Phys. Rel,. D 38:2009 (1988). 
48. G. Mana, T. Mendes, A. Pelissetto, and A. D. Sokal, Nucl. Phys. B (Proc. Suppl.) 47:796 

(1996). 
49. T. Mendes, A. Pelissetto, and A. D. Sokal, Multi-grid Monte Carlo via X Y  embedding I. 

General theory and two-dimensional O( N)-symmetric nonlinear a-models, hep-lat/9604015. 
50. R. G. Edwards and A. D. Sokal, Phys. Re~,. D 40:1374 (1989). 
51. S. Caracciolo, R. G. Edwards, A. Pelissetto, and A. D. Sokal, Nucl. Phys. B 403:475 

( 1993 ). 
52. T. W. Anderson, The Statistical Analysis of  Time Series (Wiley, New York, 1971 ). 
53. M. B. Priestley, Spectral Analysis and Time Series (Academic Press, London, 1981 ). 
54. N. Madras and A. D. Sokal, J. Stat. Phys. 50:109 (1988). 
55. A. E. Ferdinand and M. E. Fisher, Phys. Retd. 185:832 (1969). 
56. C. J. Hamer, M. T. Batchelor, and M. N. Barber, J. Stat. Phys. 52:679 (1988). 
57. D. Toussaint, In From Actions to Answers, T. DeGrand and D. Toussaint, eds. (World 

Scientific, Singapore, 1990). 
58. S. D. Silvey, Statistical htJerence (Chapman and Hall, London, 1975), Chapter 3. 
59. J. L. Cardy, M. Nat, enberg, and D. J. Scalapino, Phys. Ree. B 22:2560 (1980). 
60. J. Salas and A. D. Sokal, Finite-size scaling and logarithmic corrections in the two-dimen- 

sional 4-state Potts model, in preparation. 

822/85/3-4-5 


