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We study the dynamic critical behavior of a Swendsen—Wang-type algorithin for
the Ashkin-Teller model. We find that the Li-Sokal bound on the autocorrela-
tion time (7;, s = const x Cy) holds along the self-dual curve of the symmetric
Ashkin-Teller model, and is almost, but not quite sharp. The ratio 1, +/Cy
appears to tend to infinity either as a logarithm or as a small power
(0.05 < p<0.12). In an appendix we discuss the problem of extracting estimates
of the exponential autocorrelation time.
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1. INTRODUCTION

Critical slowing down has become one of the main limiting factors of the
state of art of Monte Carlo simulations.’™ The autocorrelation time 7,
which roughly measures the Monte Carlo time between two statistically
independent configurations, diverges near a critical point. More precisely,
for a finite system of linear size L at criticality, we expect a behavior v~ L*
for large L: here the power z is a dynamic critical exponent, which charac-
terizes the dynamic universality class of the Monte Carlo algorithm. The
traditional local algorithms (such as single-site Metropolis) have a dynamic
critical exponent z = 2. This is a severe critical slowing down, in which the
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amount of computer work needed to study a lattice of size L grows
approximately L times faster than the naive geometrical factor LY (d being
the dimensionality of the lattice). To study the static critical behavior we
need high-precision data (run lengths >10° 7). In practice, it is very
difficult to obtain high-precision data for large lattices with this kind of
algorithm. To study the dynamic critical behavior, the situation is even
worse, as we need much higher statistics (run lengths =10%7). The
geometrical factor LY is unavoidable for the usual Monte Carlo simula-
tions, so the elimination (or reduction) of the critical slowing down is the
only way to make Monte Carlo simulations feasible close to a critical
point. -

Dramatic progress in this direction was stimulated by the introduction
of the so-called cluster algorithms.*® Instead of sequentially updating the
whole lattice by single-spin moves, these algorithms employ nonlocal
moves, such as cluster flips. For the ferromagnetic g-state Potts model, the
Swendsen—Wang (SW) cluster algorithm®' achieves a significant reduction
in z compared to the local algorithms: one has = between 0 and =1, where
the exact value depends on the number of Potts states and on the dimen-
sionality of the lattice.**’ The two-dimensional (2D) Ising model is the most
favorable case: the critical slowing down becomes extremely weak, with
estimates from different workers ranging from z=0.354+0.01° to
z=0254+0.01" to z=0xlog (ie., T ~log L).'"® Unfortunately, it is very
hard to distinguish between the power-law and logarithmic scenarios using
only lattices with L <512.%7 In other cases, the performance of the SW
algorithm is less impressive (though still quite good): e.g., z=0.55+0.03
for the 2D 3-state Potts model® and z=~1 for the 2D 4-state Potts
model® and for the 4D Ising model.'*'" Clearly, we would like to under-
stand why this algorithm works so well in some cases and not in others;
we hope in this way to obtain new insights into the dynamics of nonlocal
Monte Carlo algorithms, with the ultimate aim of devising new and more
efficient algorithms.

A single-cluster variant of the SW algorithm was introduced by
Wolff."'>) Instead of updating all the clusters (with a given probability),
only one cluster is selected and updated. It is not known why the dynamic
exponents z,. associated to the single-cluster dynamics are very close to
those of the SW dynamics in some cases (e.g., 2D ¢ =2, 3 Potts models),
but not in other cases (e.g., Ising model in dimension d>3)."'>'® A priori
one would expect the two algorithms to belong to different dynamic
universality classes.

There is at present no adequate theory for predicting the dynamic
critical behavior of an SW-type algorithm. However, there is one rigorous
lower bound on z. In 1989 Li and Sokal® showed that the autocorrelation
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times of the standard (multi-cluster) SW algorithm for the ferromagnetic
g-state Potts model are bounded below by a multiple of the specific heat:

Tin(. AT Tim, & Tcxp 2 const x CH (11 )

Here .4 is the bond density in the SW algorithm, & is the energy, and Cj
is the specific heat; 7;, and 7., denote the integrated and exponential
autocorrelation times, respectively.’*' As a result one has

Zinl,.|"zinl,632cxp>a/v (12)

where « and v are the standard static critical exponents. Thus, the SW
algorithm for the g-state Potts model cannot completely eliminate the criti-
cal slowing down in any model in which the specific heat is divergent at
criticality (although one might hope to obtain z=0xlog in the the 2D
Ising model, where the specific heat is only logarithmically divergent).
Now, one would like to know whether the bound (1.2) on critical
exponents is sharp: that is, does it hold as equality, or only as a strict
inequality? In more detail, one would like to know whether the bound (1.1)
on the autocorrelation times is sharp (t/C, bounded), sharp modulo a
logarithm (t/Cy ~log? L), or not sharp (1/Cy ~ L? with p>0).

Unfortunately, the empirical situation for the 2D Potts models is not
very clear. For the Ising case, the bound (1.2) would be sharp if (and only
if) the autocorrelation time grows like a logarithm; this is consistent with
the data, but not demanded by it.*® For the 3-state Potts model, the
bound is apparently not sharp: we have z=055+003® versus
a/v=2/5=04."" The 4-state Potts model is rather peculiar: the naive fit
to the data, z=0.89 + 0.05,'® is smaller than the (exactly known) value of
a/v=1.!"> The explanation of this paradox is that the true leading term in
the specific heat has a multiplicative logarithmic correction, Cg~
Llog=*L,""*'™ and indeed the observed exponent a/v (from a naive
power-law fit) is 0.75+0.01,’ consistent with the bound (1.2). It is
reasonable to conjecture that the true behavior of the autocorrelation time
is likewise of the form t~ LlogfL (with p> —3/2), in which case the
bound (1.1) would be sharp modulo a multiplicative logarithm.

So we are in a strange situation: the Li-Sokal bound might be sharp
{possibly modulo a logarithm) for the 2D Potts models with ¢=2 and
g =4, but it is apparently not sharp for ¢ =3.?

2 For Ising models in lattice dimensions @3 3. the bound (1.2) is clearly nor sharp. For the
3D Ising model, estimates of z range from 0.3394+0004 to 0.75+0.01,151%3® while
a/v=0.17."3 For Ising models in dimension d>4, we expect z=1 (possibly modulo a
logarithm in d=4),""""" while of course a/v =0 (or 0 x log*? in d=4).
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There is yet another way of “interpolating” between the 2-state (Ising)
and 4-state Potts models: both are special cases of the Ashkin-Teller (AT)
model,"** which has rwo interacting Ising spins on each lattice site. (For a
review of the AT model, see Section 2 below.) The symmetric AT model
(which is equivalent to the general Z, clock model) presents a very rich
phase diagram. In particular, one of the critical curves (namely, the self-
dual curve) is quite unusual: the critical exponents vary continuously along
this curve (as a result of a marginal operator), thus violating the usual
notion of universality. One point on this critical curve is precisely the
4-state Potts model at criticality, while another point on this curve
corresponds to a pair of decoupled Ising models. Thus, new insights on the
sharpness of the Li—Sokal bound in the 2-state and 4-state Potts models
might be obtainable by studying the same question on the self-dual curve
of the symmetric AT model.

Wiseman and Domany'?*’ devised the first SW-type algorithm for the
AT model. Though their method of derivation is rather complicated, the
algorithm is simple and reduces to the well-known SW algonithms in the
special cases of the Ising and 4-state Potts models. The same algorithm had
been independently introduced by Laanait e al.'*>’ in another context: they
studied a model closely related to the AT model, and they used the same
SW-type algorithm as a tool for their rigorous proofs.

In this paper we would like to address the issue of the sharpness of the
Li-Sokal bound (1.1)/(1.2}) along the self-dual curve of the symmetric AT
model, and in particular for the 4-state Potts model. We propose two
variants of the algorithm. The first, which we call the “direct” algorithm, is
essentially the same as that of Wiseman and Domany®*; however, we
think that our derivation is simpler. {The reader can judge!) The second
variant, which we call the “embedding” algorithm, is somewhat simpler to
implement in practice, it is not equivalent to the direct algorithm, although
we expect it to lie in the same dynamic universality class.

We have studied numerically the multi-cluster (“standard SW”) version
of the embedding algorithm® at three points on the AT self-dual curve: the
4-state Potts model and two additional models (ZF and X2) interpolating
between the 4-state Potts and Ising models. We have used lattices up to
L=512 (as well as L=1024 for the 4-state Potts model), and have

¥ By contrast, Wiseman and Domany'** studied the single-cluster (“Wolff") version of the

direct algorithm (in the single-cluster context the direct and embedding algorithms turn out
to be equivalent). It is important that both the multi-cluster and single-cluster versions be
studied, as they may well lie in different dynamic universality classes. We concentrate here
on the multi-cluster version, because it is only for this version of cluster algorithms that the
Li-Sokal bound (1.1)/(1.2} is known.
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systematically employed finite-size-scaling techniques to analyze the
numerical data. We have also reanalyzed the very precise data reported by
Baillie and Coddington'” for the 2D Ising model on lattices up to L =512.
Our results are the following:

1. The Li-Sokal bound is satisfied on the AT self-dual curve.
(Indeed, for the direct algorithm we are able to prove this
rigorously.)

o

The bound is rather close to being sharp for a generic point on
the AT self-dual curve. Using power-law fits for the quantity
T «/Cy. We obtain estimates of z, , —a/v ranging from =0.05
to ~0.12. The lower value corresponds to the Ising and X2 cases,
and the higher value to the 4-state Potts model.

3. In all cases the data are consistent with a logarithmic growth of
Tin.s/Cy a5 A+ Blog L. For the Ising and the ZF models, a
logarithmic behavior A4log? L with p=03l also gives a
reasonable fit.

4. In all cases, the data are consistent with the boundedness of
T «/Cy @8 L — 00 only if one assumes rather strong corrections
to scaling, ie., 4 + BL~“ with 1/8 <4 < 1/4. Moreover, for the 4-
state Potts model this scenario implies an implausibly large value
for the coefficient B (B|=10). In all cases the 4+ BL~4 fit is
inferior to the AL” and 4 + Blog L fits.

5. If we believe (on theoretical grounds) that there should be some
continuity in the behavior of the ratio 7, ,/C, along the self-dual
curve of the AT model, then the possible scenarios reduce to the
pure power-law and simple logarithmic A4 + B log L behaviors.

Thus, the bound (1.1) on the autocorrelation time is not sharp, but it
might be sharp modulo a logarithm at some or all points of the AT self-
dual curve. Further studies on significantly larger lattices will be required
in order to distinguish convincingly between a logarithmic and a small-
power-law growth.

This paper is organized as follows: Section 2 reviews the definition and
properties of the AT model: phase diagram, critical exponents, etc. In Sec-
tion 3 we construct our SW-type algorithms for the AT model, and we
relate them to other SW-type algorithms. In Section 4 we present and
analyze our numerical results for three selected points on the AT self-dual
curve. The sharpness of the Li-Sokal bound is also discussed. Finally,
in Section 5 we summarize our conclusions. In Appendix A we provide



302 Salas and Sokal

a rigorous proof of the Li-Sokal bound for the direct AT algorithm. In
Appendix B we explain in detail how we performed the fits of the auto-
correlation functions to extract estimates of the exponential autocorrelation
times.

2. THE ASHKIN-TELLER MODEL

The Ashkin-Teller (AT) model'®® is a generalization of the Ising
model to a four-state model. To each lattice site x we assign two Ising spins
o,=+1 and 7,= +1, and they interact through the Hamiltonian

Hyr=-J ) o0,-J Y t,7,—K ) o.1.0,1, (2.1)
[ {(xr) {xyvd

where the sums run over nearest-neighbor pairs {xy). It can be interpreted
as two Ising models with nearest-neighbor couplings J and J' and inter-
acting via a four spin coupling K. Note that the fields o, 7, and ot play
symmetric roles in this model; we can consider any two of these three as
the “fundamental fields.”

This model contains as particular cases some other well-known
systems. The plane K=0 in the coupling-constant space (J,J', K)
corresponds to a pair of decoupled Ising models, one with coupling J and
the other with coupling J'. At the other extreme, the limit K— + oo
corresponds to a single Ising model (o =1) with coupling J+ J'. Finally,
the line J=J' =K is the 4-state Potts model with Jp,, =4J.

The family (2.1) of AT Hamiltonians exhibits several symmetries. First
of all, we can permute freely the spin variables {o, 7, ot). This implies that
the AT model is mapped onto an essentially equivalent model under any
permutation of the couplings (J, J', K). Moreover, if the lattice is bipartite,
we can flip ¢ or 7 or both on one of the two sublattices (in other words,
we choose exactly two of the three variables o, 7, and o7 and flip these on
the chosen sublattice). This implies that the AT model is mapped onto an
essentially equivalent model under the following transformations:

(LLJ.Ky—(—-J,J, —K) (2.2a)
(J,J',K)=(J, =J', —K) (2.2b)
(J,J,Ky=(-J, —J", K) (2.2¢)

These transformations will be useful in Section 3.
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We are mainly interested in one particular case of the Hamiltonian
(2.1): the symmetric* AT model characterized by J=J",

Hgpr=—-J Y (o.0,+1,7,)—K ) o,1.0,1, (2.3)
{xy) (€31

This is exactly the general Z, clock model®

Hyoee=—2J Y cos(0,—0,)—K ¥ cos(20,—26,) (2.4)
{awd <y

where the dynamical variables take the values 0, € {0, n/2, =, 37/2}. The
relation can be easily seen by setting o.=./2cos(f,—n/4) and 7,=
\/5 cos(f, + m/4).

The AT model exhibits a rich phase diagram, in both two!***® and
three'® dimensions. Here we concentrate on the two-dimensional square-
lattice symmetric AT model. Although we do not know how to solve this
model analytically, we have a fairly good understanding of its phase
diagram (see Fig. 1). From (2.2c) we see that in the symmetric AT model
a sublattice flip of ¢ and t corresponds to the change J— —J; it follows
that the phase diagram is symmetric under reflection in the J=0 axis,
under which ferromagnetic ¢ and t ordering becomes antiferromagnetic
{AF) and vice versa. For this reason, we show in Fig. 1 only the half-plane
J=0.

The line K=0 corresponds to a pair of decoupled Ising models, so
there are Ising critical points at (J, K) = (£ log(l +ﬁ), 0). Point DIs in
Fig. | represents the one with the plus sign (i.e., the ferromagnetic one).
The model with J=0 is again an Ising model, but in the variable oz. There
are thus additional critical Ising points (J, K) = (0, + log(l +ﬁ)). The
one with the plus sign (point Is in Fig. 1) is ferromagnetic, while the one
with the minus sign (AFIs) is antiferromagnetic. Finally, in the limit
K— + oo we find Ising transition points at J= +1log(1 +ﬁ). The one
with the plus sign is ferromagnetic and corresponds to the point Is’ of
Fig. 1. The other one is antiferromagnetic and is not depicted in Fig. 1.

The line J = K corresponds to the 4-state Potts-model subspace (right
dash-dotted line in Fig. 1). Therefore, there is a ferromagnetic critical point

* Baxter'®” calls this model the “isotropic” AT model. We prefer not to use this terminology,
in order to avoid confusion with spatial isotropy or anisotropy.

* More precisely, this is the general Z, clock model on an undirected graph. On a directed
graph (ie, one with oriented bonds {xy))., the interaction term sin(d,—6,)=
ilo 1. —0o,1,) is also allowed.
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Phase Diagram of 2D AT Model
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S
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Fig. 1. Phase diagram of the symmetric Ashkin-Teller model on the square lattice. The self-
dual curve is B-DIs-P-C. The solid curves represent second-order phase transitions, the
dash-dotted ones the 4-state Potts-model subspace, and the dotted one the noncritical part
of the self-dual curve. The Roman numerals designate the different phases of the model
(see text).

at J=K=1}log3 (point P in Fig. 1). The AF regime (/=K <0) is more
subtle. There is no rigorous result concerning the existence or nonexistence
of a critical point in the AF 4-state Potts model. However, there is a strong
numerical indication'®® that this model is noncritical, even at zero tem-
perature: indeed, the second-moment correlation length & is <2 lattice
spacings at all temperatures, uniformly down to 7=0.% The absence of a
critical point along the line /= — K (left dash-dotted line in Fig. 1) follows
immediately using the J— —J invariance.

The AT model on any planar graph can be mapped into another AT
model on the dual graph.*?”3%31) The duality transformation is best viewed
in terms of the Boltzmann weights’

® The critical properties of the antiferromagnetic g-state Potts model depend strongly on
the lattice structure. For instance, the AF 3-state Potts model has a transition at nonzero
temperature on the triangular lattice,*® has a critical point at zero temperature on the
square lattice,*®3*3% and is expected to be noncritical at all temperatures on the hexagonal
lattice.

7 The four energy states on a bond {xy) are labeled 0, 1, 2, 3 as follows: the high-order bit
is (1 —0,0,)/2 and the low-order bit is (1 —,7,)/2.
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o=’ TR (2.5a)
w,=e/ 77 ~K+h (2.5b)
wy,=e IF/—K+N (2.5¢)
wy=e I/ KN (2.5d)

where J,, is an arbitrary constant fixing the zero of energy. The AT model
with Boltzmann weights (g, ®,, w,, ;) is mapped by duality to a new
AT model with weights (@, @,, @, @) given by®:°

@y = g+ @, + s+ @) (2.6a)
@ = 3w+ 0, — 0, — ;) (2.6b)
@=L wy— ) + @, — ;) (2.6¢)
@3=3(we— 0 — W, + ®3) (2.6d)

The symmetric AT model (the one with @, =®,) is clearly mapped under
duality into another symmetric AT model (i.e., @, = @,). Specializing to the
square lattice, we have that the dual graph is again a square lattice, and the
self-dual manifold of (2.6) is

W= +wr+ w3 (2.7}

For the symmetric AT model on the square lattice, the self-duality condi-
tion (2.7) can be easily written in terms of the coupling constants:

e % =sinh 2J (2.8)

This is represented in Fig. 1 by the curve B-DIs-P-C.

Furthermore, the AT model on any planar graph can be mapped onto
an 8-vertex model on the medial graph.*" In particular, the AT model on
the square lattice can be mapped onto a staggered 8-vertex model on the
square lattice (which has not been exactly solved in general). As a special
case, the AT model on the self-dual manifold (2.7) maps onto a
homogeneous 8-vertex model, which is exactly soluble. Furthermore, the
symmetric self-dual AT model (2.8) maps (after a simple further transfor-
mation) onto a homogeneous 6-vertex model. In this way, Baxter showed

% Note that if the original weights w, are normalized so that J,=0, the dual weights &, do
not necessarily have this normalization.

° This duality transformation corresponds to the Fourier transform on Z, x Z, followed by
interchange of o and t (i.e., interchange of w, and w).



306 Salas and Sokal

that the self-dual curve (2.8) is critical only for K< }log 3 (solid curve in
Fig. 1), and is noncritical for K> }log 3 (dotted curve in Fig. 1). The criti-
cal part belongs to the universality classes of the conformal field theories
with central charge c=1 (i.e., it can be related to the Gaussian model*®).
Along this line the critical exponents vary continuously and they are
known exactly (see below).

From series expansions,'”® mean-field theory and approximate real-
space renormalization-group calculations'® we know that two critical
curves emerge from the Potts point P, one going to the Ising critical point
Is and the other one going to the Ising critical point Is’ at K= + 0.'° The
critical curves P-Is and P-Is’ map into one another under the duality rela-
tion (2.6).?”! Finally, there is another critical curve emerging from the
point AFIs and pointing toward K — — 0. The exact location of these
three curves is unknown, as is their universality class. However, most
people believe that they are Ising-like. In ref. 38 it is argued that these criti-
cal curves should be given by nonalgebraic functions.

The four critical curves mentioned above are the borderlines of the
four phases appearing in this model for J> 0. These phases are'':

I. This is the so-called Baxter phase.’*®’ The spins ¢ and 7 are inde-
pendently ferromagnetically ordered. There are thus four
extremal infinite-volume Gibbs measures according to the signs
of (o) and (7> (which may be chosen independently); the sign
of (o) is then equal to that of {o)>{T).

II. This is the paramagnetic phase, in which all three spins o, 7, and o7
are disordered. There is a unique infinite-volume Gibbs measure.

III. In this phase both the spins ¢ and 1 are disordered (ie.,
lim,_, ..<{o,0,>=lim,_,_ ., {t,.7,>=0), but their product
ot is ferromagnetically ordered (ie., im,_,,_ .{0,7,0,7,>>0).
There are two extremal infinite-volume Gibbs measures, accord-
ing to the sign of {(o7).

IV. This is the antiferromagnetic analogue of phase III: the spins o
and t are disordered, while the product air is antiferromagneti-
cally ordered (ie., lim,_ .. (—1)""*o,7,0,7,)>0). There
are again two extremal infinite-volume Gibbs measures, accord-
ing to the sign of the sublattice magnetization (—1)"* (g .7,>.

19 Pfister'*”’ has proven the existence of two phase transitions (i.e., of the three phases II, 111,
and 1 in succesion) along any ray in the quadrant J, X >0 with slope 0 <J/K <1 More
generally, this applies in the full AT model along any ray in the octant J, J’', K> 0 with
slope 0 < (J+J')/K< 1.

' We follow the terminology used in Baxter’s book.*”
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This picture has been proven rigorously for low temperature and arbitrary
spatial dimension, using Pigorov-Sinai theory.®?’ In particular, it was
shown that deep in region I there exists four periodic extremal Gibbs
measures, and deep in regions III and IV there exist two periodic extremal
Gibbs measures.'?

The critical exponents along the self-dual curve can be obtained by
relating the AT model to the 8-vertex model or to the Gaussian
model.3¢ #1-42) We parametrize the critical part of the self-dual curve by

e4,_,/2+2005;t+1 (2.92)
J2+2cospu—1 '

e**=1+2cospu (2.9b)

where 0 < u < 2n/3. This parameter y is related to the coupling constant g
of the Gaussian model**-'* by u=mn(1 — g/4), so that 4/3 < g<4. Thus,
g=4/3 corresponds to the point at K= —o0 (B in Fig. 1), g=2 is the
decoupled Ising model, g =3 is the model considered by Zamolodchikov
and Fateev,'*>’ and g =4 is the 4-state Potts model. The critical exponents
along the self-dual curve are given by

2—y
p=— 2.10
k 3-2y ( a)
-2
«_2-2y (2.10b)
v 2—y
y 7
L= 2.10
v 4 ( ©)
Y _T=4y (2.10d)
v 4-2y
where the parameter y is related to u by
2, 8 (2.11)
i 2

2 Note the order of adjectives: Pigorov-Sinai theory studies extremal Gibbs measures that
happen to be periodic; it says nothing about nonperiodic Gibbs measures (e.g., those with
interfaces) or about periodic Gibbs measures that are extremal only within the restricted
class of periodic Gibbs measures. For further discussion, see ref. 40, Section B.3.1.

* Qur g corresponds to that of Saleur'*® and equals 27 times of the K of the Kadanoff and
Brown'** and Yang.'*
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with 0 < y <4/3. Here « is the specific heat exponent, while y (resp. ') is
the susceptibility exponent for ¢ and 7 (resp. for o). We have chosen to
specify the ratios (2.10b-2.10d) because these are directly measurable by
our Monte Carlo methods. For y > 1 (corresponding to K <0), the specific
heat has a cusp singularity (a <0) rather than a divergence, but both
susceptibilities remain divergent.

The region between the decoupled Ising model (DIs) and the critical
4-state Potts model (P) is the most interesting. It is worth mentioning that
both the g¢-state Potts model at criticality and the symmetric AT on the
self-dual curve can be represented as certain 6-vertex models.*”-4!-4¢’ By
relating these two 6-vertex models, we can map the former model onto the
latter one, and use ¢ as a parametrization of this subset of the AT self-dual
curve. For the square lattice, the ¢-state Potts model at criticality is
mapped to the point given by (2.9) with 2 cos u = \/(_] Thus, the case ¢ =0
is mapped to K=0 (i.e., the decoupled Ising model), ¢=2 to the model
considered by Zamolodchikov and Fateev,'**’ and ¢=4 to the point
J=K=1}log3 (ie., the 4-state Potts model).

3. THE ALGORITHM

3.1. Direct Algorithm

The idea behind this new algorithm is the same as that of all
Swendsen-Wang-type algorithms"”-'*: we decompose the Boltzmann
weight by introducing new dynamical variables (living on the bonds of the
lattice), and we then simulate the joint model of old and new variables by
alternately updating one set of variables conditional on the other set. As we
have two distinct sets of Ising spins, we expect to introduce two distinct
sets of auxiliary variables.

We begin by enumerating the possible energy values which can occur
on a given bond {xy). Out of the 16 spin configurations on each bond,
there are only four different energy values (see Table I). We can order these
energies in increasing order, but this ordering of course depends on the
relative values of the coupling constants J, J' and K. Instead of developing
a different algorithm for each possible ordering, we can use the symmetries
(2.2a)—(2.2¢) of the general AT Hamiitonian (2.1) and choose'® an equiv-
alent general AT model satisfying

J,J = K] (3.1

¥ For a pedagogical presentation, see ref. 1, Section 6, or ref. 4, Section 4.
15 At least if the lattice is bipartite.
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Table I. Energies for a Bond Joining
the Spins {o, 7) and (o', T')“

g d T T Energy

T 1 T Ey=

T T E\=2J +K)
T T Ey=2J+K)
Tl Tl Ey=2J+J")

“These energies are invariant under the
transformations o,06' < —g, —¢’ and
7,7« —1, —7. On each bond we have
added a constant energy J+J' + K to (2.1),
in order to set E,=0.

For such a model, the energies satisfy
0=E0<E|,E2<E3 (3.2)

In particular, for a given bond, the lowest energy state is the one with the
two o spins parallel and the two 7 spins parallel. We shall hereafter assume
that (3.1) holds.

Remark. The following algorithm is also valid for a non-
homogeneous AT model on an arbitrary finite graph, with Hamiltonian

HAT = = Z J_\-ya',\'ay - Z Jf\'_vt.\' T.‘. - Z K_\._I,O'_\.T_\. 0'“. t,\' (33)
[N x> <Xy

satisfying
J.\'_r' J{\'y > |K.\'_\' | (34)
for every bond {xy). It suffices to make the obvious notational alterations.

The Boltzmann weight associated with the bond {(xy) is equal to

Wbond(a.v’ O.y’ Txs t_v)
=e—2(l+.l'l +e—2!'[e—ZK_€—2J] 50"‘.‘”
—2Jr ,—2K =2
+e [e —e ] 51’_\.‘7},

F[1—e W HK g2 K g o2+ N5 S L (35)
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Let us now introduce the auxiliary variables m,,, n,, =0, 1 associated with
the spins o, 7 respectively, and define the joint-model Boltzmann weight for
the bond {xy) to be

t
Wi, Oy Tas Tys Py 1)

2T+ T -2 —2K _ ~’J
=e (5)11,\..,,.0 (Sn_r_‘.‘ 0 +e [€ ] 50. ay m\l 1 51:” V]
-2 —2K =2
+e [e —e ] 51‘ Ty 6nr\-, 0 611\) 1
—2J'+ K) —2(J+K) HT+J)
+ [ l1—e - +e ] 5 . 3y r LTy 5!11_“». 1 Y01

(3.6)

If we sum (3.6) over m, and
joint probability is then

we obtain (3.5), as desired. The complete

Xy

- 1 L
wiony L g ¢}; {m, n}) == [T Wm0 0,0 Tos Ty M1 ) (3.7)

Xy

where Z is the partition function of both the joint model and the original
model:

z= X Y I Wi o ttimn,)  (38a)
g.t=+1 mn=0.1 (x>
= Z H Wbund(aw G‘a X T_‘) (38b)
=+1 x>

Our SW-type algorithm consists in simulating the joint probability
distribution (3.7) by alternately applying the conditional distributions on
{o, 7} and on {m, n}. These two steps can be read off immediately from
(3.6)/(3.7); in detail, they are the following:

Step 1. Update of {m, n} given {0, t}. Conditional on the {o, 7} con-
figuration, the bond variables {m, n} are given independently for each bond.
For a bond {xy) with spins ¢, 7,, 7,, 7,, wWe obtain the new bond vari-
ables m,, and n,, (independently of the old values) by the following rules:

(la) If 0,=0, and 7,=7,, then we choose (m
following probabilities

ny.) with the

xpe

(my,,ny)=(1,1) with p,=1—e 20 +K _p-2I+ K =247
(M, ny)=(1,0)  with p,=e Y [e K —¢~%]
(m,,n,)=(0,1) with p,=e Y[e K¢~
(m,,,n,)=(0,0) with p,=e 2/*'=1—p —p,—p,



Swendsen-Wang-Type Algorithm for Ashkin-Teller Model 311

(Ib) Ifo,=0, and tr,= —1,, then the probabilities are
(M, n,)=(1,0) with g, =1—¢ 2/+%
(my,,n,,)=(0,0) with ¢g,=e V8 =1—g¢q,

(Ie) Ifo,=—0, and t,=1,, the probabilities are
(Myy, ) =(0,1) with ri=1—¢ 2/ 50

(my,. 1) =(0,0) with ry=e 2/ +0=1_y

(1dy fe,=-0,and 7,=—7
probability 1.

. we choose (m,,, n,)=(0,0) with

All these choices are made independently for each bond {xy).

Step 2. Update of {0, t} given {m, n}. Given the bond configura-
tion {m, n}, we build all the connected clusters of ¢ spins (resp. t spins)
joined by bonds with m =1 (resp. n,,=1). Within each cluster, the spin
values are required to be equal, but this common value may be either +1
or —1. The spin value for each cluster is chosen randomly, independently
of the old value and of the choices made for the other clusters.

One iteration of the direct algorithm consists of an application of step
1 followed by an application of step 2.

Remarks. 1. Wiseman and Domany'®" introduced essentially this
same decomposition of the Boltzmann weight, although their derivation is
in our opinion more complicated. They then studied numerically the single-
cluster (“Wolff”) version of this algorithm. Here we study the many-cluster
(“Swendsen-Wang”) version.

2. This direct SW-type algorithm satisfies the Li-Sokal bound
(1.1)/(1.2). The proof is a straightforward generalization of the one given in
ref. 9 for the Potts case; we present it in Appendix A.

3. We can generalize our SW-type algorithm to a “generalized
Ashkin—Teller model” consisting of a g-state Potts variable ¢ and an r-state
Potts variable ¢ interacting through the Hamiltonian

HGAT= —Z(J—K) Z 60_\.@_2(‘],_1() Z ar\.r.v_4K Z 50_\.0.‘51_.‘1..
<xrd <xd ' x> ' '
(3.9)

It is clear that from this Hamiltonian we obtain again the joint probability
distribution (3.6). This model is considered in ref. 25 when J' =K



312 Salas and Sokal

3.2. The Embedding Algorithm

The algorithm presented in the preceding subsection is perfectly legal,
but it is somewhat complicated to write the computer code for its step 1 in
an efficient way. In this section we introduce a variant algorithm in which
we deal with only one kind of spin (o or 7) at a time.

Consider the Boltzmann weight of a given bond {xy), conditional on
the {1} configuration (i.., the 7 spins are kept fixed): it is

Wbond(a.\'a J_rs Txs T_\') = e—Z(J+Kt_\-r_|-) + [1 - e—Z(J+ KTV‘VT"‘)] 50,\~. ay (310)

We can simulate this system of o spins using a standard SW algorithm. The
effective nearest-neighbor coupling

J=J+Kzt, (3.11)

1s no longer translation-invariant, but this does not matter. The key point
1s that the effective coupling is always ferromagnetic, due to the condition
(3.1). An exactly analogous argument applies to the {t} spins when the
{o} spins are held fixed.

The embedding algorithm for the AT model has therefore two parts:

Step 1. Update of {o} spins. Given the {r} configuration (which
we hold fixed), we perform a standard SW iteration on the o spins.
The probability p,, arising in the SW algorithm takes the value p., =
| —exp[ —2(J+ K7,7,)].

Step 2. Update of {w} spins. Given the {s} configuration (which
we hold fixed), we perform a standard SW iteration on the t spins.
The probability p,, arising in the SW algorithm takes the value p, =
1 —exp[ -2(J'+ Ko ,0,)].

One iteration of the embedding algorithm consists, by definition, in a
single application of step 1 followed by a single application of step 2.

Wiseman and Domany®* also constructed an embedding version of
their single-cluster algorithm. Furthermore, they showed that, in the single-
cluster context, the direct and embedding algorithms define the same
dynamics'®; only the computer implementation is different. However, this
equivalence does not hold for our many cluster algorithm. In the direct
algorithm we have independent clusters of o spins and 7 spins that could
be flipped simultaneously. In the embedding algorithm we have at each
step only one of the two types of clusters.

'6 More precisely. this equivalence holds when the embedding algorighm is defined by making
a random choice of step 1 or step 2 at each iteration.
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The embedding algorithm, due to its simplicity, is the one used in our
MC study of the AT model (see Section 4). We expect that it lies in the
same dynamic universality class as the direct algorithm, on the grounds
that one SW hit of {c} followed by one SW hit of {z} should be roughly
equivalent to one joint hit of {0, r}. Of course, we do not expect the
autocorrelation times for the two algorithms to be equal, but we do expect
them to be asymptotically proportional as the critical point is approached.
A similar behavior is found in comparing the direct and XY-embedding
versions of the multigrid Monte Carlo (MGMC) algorithm for the 4-vector
model.MS' 49)

Remark. This algorithm is closely related to an embedding
algorithm for general Z, clock models on an undirected graph. We can
consider Z,, as a subgroup of U{1) and then apply Wolff’s embedding algo-
rithm for the XY model.!*%%3" Let us specify the reflection plane by a
vector §=(cos ¢, sin @) in this plane; clearly ¢ is specified only modulo .
If n is odd, there is a unique type of reflection: the reflection plane passes
through one spin value and one point bisecting two spin values, and it
corresponds to ¢ =2nk/n with k either integer or half-integer. However, if
n is even, there are two types of reflections: the reflection plane can either
pass through two spin values or else through two bisector values; these
correspond to ¢ =2zk/n with k integer or half-integer, respectively. Thus,
for the 4-state clock model we have two reflections of the first type and two
of the second type: with the identifications a_\.=\/§ cos(f,—mn/4) and
T, = \/5 cos(8, +n/4) [taking 8, € {0, n/2, n, 3n/2} ], these reflections are

¢=0: (0,7)—> (1, 0)
(3.12)
¢=n/2: (0,7)>(—1, —0)
and
¢=—n/d:  (0,7)>(—0,1) (3.13)

& =mn/4: (g,7)—> (0, —1)

respectively. The last two moves (i.e., those of bisector type) are precisely
the moves allowed in our algorithm. The first two moves correspond to the
interchange of ¢ and z, either without or with a simultaneous flip of both
spins.

So let us fix ¢ to be one of the four values listed above, and let us
embed Ising spins &.= +1 into the 4-state clock model via the Wollff
update

822/85/3-4-2
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Plugging this into the clock-model Hamiltonian (24), we obtain an
induced Ising system in the {¢} variables with interaction

J =2 sin(8,—¢) sin(0, — )| [J+ 2K cos(8,—¢) cos(, ~¢)]  (3.15)

This Ising system can then be simulated by means of an SW algorithm. The
cases ¢ = F /4 correspond to steps 1 and 2 of our embedding algorithm.
On the other hand, the case ¢ =0 is characterized by an effective coupling

TN =206, 64 _u (3.16)

This means that only bonds joining sites with o, # 7, and ¢, # 7, can be

“activated” [with probability p =1—exp(—4J)]; the move (a, )~ (1, 0)
is then equivalent to flipping both ¢ and t within each such cluster. An
analogous conclusion applies to the case ¢ =n/2 here only bonds joining
sites with ,=1, and o,=1, can be “activated.” Thus, the moves with
¢=0,7n/2 are in a sense merely combinations of the moves ¢ = +n/4
already contained in our AT embedding algorithm. For this reason, we
think that the introduction of the moves ¢ =0, n/2 into our embedding
algorithm will not further reduce the dynamic critical exponent. Indeed, the
algorithm with only the ¢ =0, n/2 moves is not even ergodic: at each site
the product o1, is conserved.

3.3. Particular Cases

As pointed out in Section,2, the AT model reduces to two decoupled
Ising models at K=0 and to the 4-state Potts model at J=J'=K. It is
worth mentioning that the above-discussed algorithms reduce to the well-
known SW algorithms for those particular cases.

When K =0, it is easy to verify that (3.6) reduces to

oint .
WJt:)u;:d(a.\" U_I" Txs Tya rn.\'.\'* ’1.\"\')

_ -2J -2

- [C" 5111“-. 0 + ( I—e ) 60\». oy 511[\._“ 1 ]

x[e76, o+ (1—e )6, .6, 1] (3.17)

This means that the Boltzmann weight for any bond is just the product of
the weights of the two independent Ising models. As a result, our direct AT
algorithm reduces to two independent SW algorithms on the systems
{o, m} and {t, n}. Of course, the same holds for the embedding algorithm,
as the o spins are decoupled from the t spins.
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When J=J'=K =0, (3.6) can be written as

joint .
th:i;:d(ax‘ G\" Tyo T‘,, n1.\'vs n.\'v)
Y —as
6m“ 0 611‘. 0 + [l —e€ ] 0«7\ ay r‘ Ty 6:11“ 1 (Sn\ 1 (318)

which is exactly the standard SW decomposition for the Boltzmann weight
of the 4-state ferromagnetic Potts model. As a result, our direct AT algo-
rithm on the line J=J'= K >0 reduces to the standard SW algorithm for
the 4-state ferromagnetic Potts model. However, the embedding algorithm
does not reduce to the standard SW algorithm in this case.

4. NUMERICAL RESULTS

4.1. Autocorrelation Functions and Autocorrelation Times

We are interested in the dynamic behavior of the embedding SW algo-
rithm described in Section 3.2. Thus, we need to study the autocorrelation
functions and autocorrelation times for each measured observable. Given
an observable (", we define the corresponding unnormalized autocorrela-
tion function as

C(’(’(t)=<(0x@v+l>_<cn>z (41)

where all the expectation values {-) are taken in equilibrium and ¢ is the
“time” in units of MC steps.'” The associated normalized autocorrelation
function is

Pec()=Coe{t)/Cu((0) (4.2)

The integrated autocorrelation time for the observable ¢ is defined as

=1+ Y peeld) (43)

- t

Here the factor 1/2 is purely a matter of convention [if the normalized
autocorrelation function is a pure exponential, p,.(f) x e~ "V* with t> 1,

'7 One “Monte Carlo step” consists in one application of “step 1™ of Section 3.2 followed by
one application of “step 2.”
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then this definition implies that ¢, . ~t]. Finally, the exponential
autocorrelation time for the observable ¢ is defined as

Ly 1
Texp, ¢ = lim sup

—_— (4.4)
- —log|pg (1)l

and the exponential autocorrelation time (“slowest mode”) for the system
as a whole is defined as

Texp = SuP Tcxp, 4 (45)
4

Note that 7., = 7.,  Whenever the observable (" is not orthogonal to the
slowest mode of the system.

The integrated autocorrelation time controls the statistical error in
Monte Carlo estimates of the mean { ). In particular, given a sequence
of n Monte Carlo measurements of the observable (¢—call them
{@,.., €,}—the sample mean

_ 1 n
(=- Z @, (4.6)
n =1
has a variance

L

var({") = Z (r—s) (4.7a)

1 n—1
== X <_M>Cu'(f) (4.7b)

"l=—(n—|)

1
~,—121im_ ¢ Ceel0) for n>rt, . (4.7¢)

This means that the variance is a factor 27, , larger than it would be if
the measurements were uncorrelated. It is therefore, very important to
estimate the autocorrelation times for all the interesting observables in
order to ensure a correct determination of the statistical errors. The
integrated autocorrelation time 7;,, , can be estimated using standard pro-
cedures of statistical time-series analysis.*>°" In this way, we obtain
reliable error bars for both 7, . and (). We have used a self-consistent
truncation window of width 67y, , (ref. 54, Appendix C). This window
width is sufficient whenever the autocorrelation function p,,(7) decays
roughly exponentially, a behavior that we will confirm explicitly here (see
Section 4.5).

The exponential autocorrelation times ., . are extracted by fitting the
autocorrelation function p,.(f), for 7 large enough, to a pure exponential
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A exp(—1/t.\p o). The statistical details of this fit are described in
Appendix B. However, it should be emphasized that it is in principle
impossible to obtain a statistically valid estimate of r,,, . as there could
always be a very slowly decaying component of p,.(t) with arbitrarily
small amplitude (which would thus be invisible under the statistical noise).
Thus, our estimates of 7., , are really lower bonds. They can be taken as
estimates of 7,,, , only if one assumes that p,.(t) is roughly an exponen-
tial, with no very slowly decaying components.

4.2. Observables to Be Measured

Let us begin by defining some basic observables. The observables of
interest involving only the a spins are

M=) 0, (4.8)
&=7 o0, (4.9)
(G

2

Z 0..\_6,211.\'1/L

N

+ Za. e'.’n.\':/L
X

X

zsg[ ] (4.10)

where L is the linear size of the system (we always use periodic boundary
conditions) and (x,, x,) are the Cartesian coordinates of the point x. The

Table il. Points of the Self-Dual Curve of the Summetric AT Model
Where Our MC Simulations Were Performed*

Point J=J K v
4-state Potts model % log 3 = 0.274653 %log 320274653 0
') I/- 1
ZF Do L’“wwm L log(1 + /2) 0220343 >
AERNPEAVAIIL 4 2
3
X2 - ]—IOg <§‘ﬁ>:0,344132 llog 65-3/2) %0.147920 ~0.735579
. 4 3 4 11-6 \/_
Ising model og( 1 +./2) ~ 0440687 0 1

I\JI

“The parameter y is defined in (2.9)/(2.11). We also include the values corresponding to the
Ising model (DIs); the dynamic data corresponding to this point have been taken from
Baillie and Coddington.'”
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last observable can be also seen as the square of the Fourier transform of
o at the smallest allowed nonzero momenta [ie., (+2n/L,0) and
(0, +2r/L) for the square lattice]; it is normalized to be comparable to its
zero-momentum analogue .#2. We define analogous observables for the t
spins and for the composite operator az.

We have run the MC algorithm on three different points of the self-
dual curve of the symmetric AT model (see Table II). One is the 4-state
Potts model at criticality, where the three variables (o, t, ot) are related by
symmetry. But for the rest of the points of the self-dual curve, only ¢ and
 are related by symmetry. Since we wish to exploit the symmetries of the
model in our data analysis, our choice of observables to measure will
depend on which model we are studying.

4.2.1. Observables for the Critical Four-State Potts Model.
For AT models on the 4-state Potts line J=J' = K, the natural choice of
the observables are those having the symmetries of the original Potts
model, namely those invariant under permutations of (g, 7, 7). We have
measured the expectations and autocorrelation times for the following
observables:

ME=Y M+ M+ AL (4.11)
E=16,+ 6.+ 6,,) (4.12)
F=UF+F+F,,) (4.13)

These observables coincide with the usual ones for the 4-state Potts model
up to some multiplicative constants. We can then define the magnetic
susceptibility

X=—;7<.////2> (4.14)
the total energy'®
E=— (5’ > (4.15)
the specific heat
Cu=37 (6D = (8> (4.16)
'® We have normalized the energy such that —1 < E<1 (ie, E is the energy density per

bond), and the same normalization has been taken for the specific heat. However, in the
literature it is more common to find the energy and specific heat normalized per site, ie.,
with a factor 1/V rather than our 1/(2}).
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and the second-moment correlation length

_WF-1)'"?
¢= 2 sin(n/L) (4.17)
where F is defined as
1
— (¢ F
F V(/) (4.18)

In all these formulas, ¥ is the number of lattice sites (i.e., ¥V=L?*) and 2V
is the number of bonds. This definition of the correlation length is
not equal to the exponential correlation length (=1/mass gap), but it is
expected that both correlation lengths scale in the same way as we
approach the critical point.

Remark. To compute the error bar of the specific heat C, we have
first computed the mean energy (&) and then considered the observable
C=(&—{&))° using the procedures described in this section.

4.2.2. Observables for a General Point on the Self-Dual
Curve. A generic point on the self-dual curve does not enjoy the 4-state
Potts symmetry, but it does of course enjoy the a ¢ < r symmetry charac-
teristic of all symmetric AT models. The natural choice is thus to define
two sets of observables: one for the ¢ and 7 variables, and another for the
composite operator or. The first set is given by

M =Y M2+ M) (4.19)
&,=46 +6) (4.20)
Z,=:F+F) (4.21)

2
aT?

and the second one by .#2_, &,,, and %,.. We then define

1 2 1 1 (Xw/Fw_l)l/z
= — - e 3 =— 7 =

Xw % <‘/%u)>’ E(u 2V<€w>’ F‘” V <Jw>’ éw 2 Sin(ﬂ/L)
(4.22)

and

1 2 1 l (Xrn'/Fat_l)l/z
_— < —_—— F = — 72 =T T

Xor V<'/”ar>s Eo’r 2V<gar>a ar V</a'r>’ éo'f 2sm(7t/L)

(4.23)
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Finally, we define a specific, heat matrix C},

1 var(é&,) cov(é&,, &..)
=— 4.24
=57 oty varthad ) (@24
with eigenvalues Cy, ., and Cy ... and corresponding eigenvectors
B 1
Wi = (4.25a)
a
e =( “1> (4.25b)

where « is some real number. These two eigenvalues have distinct critical
exponents: Cp . corresponds to a relevant operator (with exponent
o> 0), while Cy; .o 1s expected to correspond to a marginal operator (with
exponent (). The marginal operator arises from the existence of the self-
dual curve (2.8), along which the critical exponents vary continuously. In
particular, on the self-dual curve (2.8), we expect that

a= —1coth2J (4.26)

(in the infinite-volume limit), as can easily be computed from the tangent
vector to (2.8), taking into account the normalization & =26, + K&, ..

4.3. Summary of Our Simulations

We have run our MC program for the embedding algorithm (Section
3.2) at three different points of the seif-dual curve (2.8): see Table II for
details. One of the points is the critical point of the 4-state Potts model
(ie., J=J =K=}log 3). The second point is the image of the g =2 Potts
model via the transformation discussed at the end of Section 2 [ie.,
(2.92)-(2.9b) with 2 cos ;t:ﬁ]: this point will be denoted as ZF and
corresponds to the model studied by Zamolodchikov and Fateev.'**’ The
third point is one of the ones studied in ref. 24 and will be denoted as in
that paper {X2); it corresponds to a Potts model with ¢~0.651287. We
also notice that the point X3 of ref. 24 is rather close to our choice ZF.
Finally, we have used the extensive MC data of Baillie and Cod-
dington'”" '* for the critical Ising model (which corresponds to the point

' We thank Paul Coddington for communicating to us the numerical values of these data,
which formed the basis for the graphs in ref. 7. For the lattices L < 128 these data coincide
with the data reported by Baillie and Coddington in an earlier paper,'® while for L =256,
512 they improve the statistics somewhat.
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Table Ill. Data for 2D Ising Model”

L X C,; (exact) Tint, &

8 41.392 4 0.008 1.145559240 2.589 + 0.005
16 139.58 +0.04 1.498704959 3.258 £+ 0.005
32 470.124+0.20 1.846767590 4.016 £ 0.005
50 10259 + 0.4 2.069384825 4.585 £ 0.005
64 15814+ 0.5 2192211393 4.899 +0.010

100 34537+ 14 2.413876309 5.510+0017
128 5319.2+24 2.536331335 5.874 £ 0016
256 17900 + 7.0 2.879786255 6.928 +0.030
512 60185 +28.0 3.222907954 8.144 +0.055

“The susceptibility y and the integrated autocorrelation time r;, , are taken from ref. 7. The
value of the specific heat Cj, is obtained from the exact formula of Ferdinand and Fisher.!**

DIs of the AT model). In Table III we include the static and dynamic data
corresponding to this point.

For each of these points we ran the MC program at different lattice
sizes ranging from L =16 to L = 1024 for the 4-state Potts model and from
L=16 to L=512 for the other two points. In all cases we started the
simulations with a random configuration and discarded the first 10° itera-
tions to allow the system to reach thermodynamic equilibrium. This dis-
card interval is sufficient for equilibration: in the worst case (i.e., the 4-state
Potts model with L =1024), it is roughly equal to 1907, , (or about
1607,,, ). The number of measurements ranges between 8x 10° and
44x10% In all cases except the L=1024 Potts, the number of
measurements is greater than 10%t,, .. This is sufficient to obtain good
estimates (errors ~1-4%) for the autocorrelation times, and excellent
estimates (errors ~0.1-1%) for the static observables. On the other hand,
for the 4-state Potts model with L =1024 we were able to achieve only
~15007;, . The error bars on this point are therefore rather large.

To test the program we compared the MC results to the exact solution
for small lattices (3x3 and 4 x4). We performed this test over a wide
range of couplings (J,J', K), including both high- and low-temperature
regions as well as the critical region. We also compared the results for
larger lattices to previous MC computations'®’ for the critical 4-state Potts
model. In all cases the agreement was good.

The CPU time required by our program is approximately 10L7 usec/
iteration on an IBM RS-6000/370. The total CPU time used in this project
was approximately 1.2 years on this same machine.

The estimates for the observables discussed in Section 4.2 are shown
in Tables IV-VIIL In all of them, the quoted errors correspond to one
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Table IV. Results of the MC Simulations at the Critical Point of the
4-State Potts Model”
L MCS z Cy < Tint. & Tine, .02
16 09 14141 +0.29 5.027 +0.027 15758 £0.056  1286+024 1277 +0.24
219 47423+ 0.94 8.341£0.040  31.681 +0.100  23.13+040  2275+0.39
64 44 1589.67 + 2.84 1393740060  63.827+0.172 41424062  40.34 +0.60
128 29 531635+ 16.49 23576 +0.170  127974+0575  78.79+201 76.19+192
256 29 17771.34 + 74.91 39.876 £ 0.388  256.175+ 1.523 142544490 13657 +4.59

51229 59876.54 + 334.67 67.938+0.934  519.102+4.078 25283+ 11.57 241.40 +10.79
1024 038 19687243 + 3137.60  120.270+4.183  1020.767 + 21.680 534.44 +67.68 505.27 1 62.22

“ For each lattice size (L) we include the number of performed measurements MCS in units
of 10%, the susceptibility y, the specific heat C,, the second-moment correlation length &,
and the integrated autocorrelation times for the energy t;, » and the susceptibility 7;, 2.
The quoted errors correspond to one standard deviation (i.e., confidence level ~68%).

Table V. Static Data from the Runs for the Point ZF

L MCS y o Las S Sae Chr, o Cit,win

16 09 146.53 +0.24 123.83+0.25 16.25240.049 13.751 £0.039 9.902.+£0.043  0.4366+0.0014
209 494,14 +1.10 395.77+1.08 32374 +0.119 27.289 +0.094 15.922+0.089 04549 +0.0025
64 09 1668.42 +4.80 1264.13+4.47 64.818 £0.296 54.410+0.229 2494940.181 04645 +0.0044

128 09 5665.88 +21.00 4067.21 +18.60 131.094 4-0.749 109.699 +0.577 39.068+0.362  0.4700 +0.0050
256 09 189253349412 12814.29 +78.80 259.066+1.930  216.909 + 1.488 62.652+0.749  0.4743 +0.0086
S12 19 6411812427465 4109467421667 521901 +£3.349 436890 £2.548 98.966 +1.034  0.4769 +0.0085

“For each lattice size L, we report the number of measurements MCS in units of 10%, the
susceptibilities y,, and x,,, the second-moment correlation lengths ¢, and &, and the
maximum and minimum eigenvalues Cj, ... and Cj ., respectively, of the specific-heat
matrix €.

Table VI. Autocorrelation Times for the Runs Performed at the Point ZF~

L MCS Tint.a,, Tint, & Tim, .o, Tint..a?,
16 0.9 943+ 0.15 8.60+0.13 9234+0.15 828+0.12
32 0.9 16.00 £ 0.33 15.05+0.30 15.39 + 0.31 14.08 +0.27
64 0.9 26.40+0.70 2532+ 0.66 24.98 + 0.65 2292+ 057
128 0.9 4497 +1.56 4374+ 1.50 41.25+1.37 38.18+1.22
256 0.9 76.35 +3.45 75.19 +3.37 70.28 £+ 3.05 65.74+2.76
512 1.9 119.02 + 4.62 117.83 +£4.55 110.03 +4.11 102.53 + 3.69

“ For each lattice size L, we show the number of measurements MCS in units of 10, the
integrated autocorrelation times for the energies ti », and T, ¢, and the integrated
autocorrelation times for the susceptibilities 7, ,? and 1, ,2 .



Swendsen-Wang-Type Algorithm for Ashkin-Teller Model 323

Table VIl. The Static Data from the Runs for the Point X2

L MCs Lo Lot S Sar Chr.mar Cot. oun

16 09 145.93+0.18 104.31 £0.19 1581540036  11.958+0.027 8.793+0.030 0.27326 +0.00088
32 09  49330+074 319.01+0.72 3148240081 2377940059  12.602+0.052  0.28820 +0.00090
64 09  1660.56+3.04 970.81 +2.63 62.79740.187  47.488+0.134  17.783+0.090 0.29708 +0.00140
128 09  5695.77+1241 295876 £9.63 12555240437 9497440312 24.808+0.152  0.3012240.00250
256 09 187726144829  8951.11+33.94 24962440990 188436+0696  33.765+0.248  0.30392+0.00316
512 19  6335287+189.64 27341.35+12027 50146842282 37848241609 4548540399  0.30652 +0.00462

Table VIIl. Autocorrelation Times for the Runs Performed at the Point X2

L MCS Tinv.a,, Tint, &, Tint, .2, Tin, .o,

16 09 6.405 + 0.085 5.965 + 0.076 6.172 £ 0.081 5.606 + 0.069

32 0.9 9.326 +£0.148 8.815+0.136 8.706 +0.134 7978 £0.117

64 0.9 13.686 + 0.264 12.169 + 0.249 12.372 £ 0.227 11.370 £+ 0.200
128 09 20.338 £ 0.476 19.719 + 0.454 17.798 +0.389 16.232 + 0.340
256 09 27.775 £ 0.758 27.196 £ 0.735 23.777 £ 0.601 21.839+0.530
512 09 39.559 +1.288 38928 + 1.257 32474 + 0.957 29.712 £ 0.839

Table IX. Ratios of Static Critical Exponents and Dynamic Critical Exponents
Zine. s Coming from the Power-Law Fits of the Results Contained in
Tables IV-VIN®

4-state Potts model ZF model X2 model Ising model

Ratio  Numerical Exact Numerical Exact Numerical Exact Numerical Exact

1.751 £0.001  7/4 1.7501 £ 0.0002  7/4
1.605 £0.001  1.6045 172
0.438 £0.008 0.4183 log
0.477+0.028 >04183  0.240+0.004 >=log

yv 174440001 74 1.750 + 0.004  7/4
v 174440001 74 1.668+0005 573
av  0.768+0009 1xlog->* 066340006 273
0876 +00]2 21xlog~* 074040010 >2/3

=i A

“ For the Ising model we include the fits to the dynamical data reported in ref. 7. For each
model we present two columns, on with the MC results (left) and the other with the exact
known results (right). The errors represent one standard deviation (i.e., confidence level of
68%). The notation “1 x log =" means that the leading term of the specific heat for the
4-state Potts model behaves like L log =¥ L. Likewise, “log” means that the leading term of
the specific heat for the Ising model is log L.
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standard deviation (i.e., confidence level of 68%). In reporting the number
of measurements (MCS), we have already subtracted the MC steps discar-
ded for equilibration.

A summary of our estimates of critical exponents, together with the
theoretically predicted exponents, can be found in Table IX. The data
analysis leading to these estimates is the subject of the next two sub-
sections,

4.4. Static Quantities

For each quantity ", we carry out a fit to the power-law Ansatz
(= AL” using the standard weighted least-squares method. As a precau-
tion against corrections to scaling, we impose a lower cutoff L< L, on
the data points admitted in the fit, and we study systematically the effects
of varying L,_;,. In general, our preferred fit corresponds to the smallest
L. for which the goodness of fit is reasonable (e.g., the confidence level*
1s 210-20%), and for which subsequent increases in L, do not cause the
x> to drop vastly more than one unit per degree of freedom.

4.4.1. Susceptibilities. We have fitted the values of the suscepti-
bilities to the power-law functions y,, = AL and y,,.= AL"/" as described
above. The estimates for y/v and y'/v are, in all cases, very stable as we
vary L. This means that the corrections to scaling for these observables
are not statistically significant (to the degree of accuracy we have attained
here).

For the 4-state Potts point (Table IV),?! our preferred estimate is
obtained for L, =16:

< 1=

(P):%(P)=1.744i0.001 (4.27)

with y* =221 for 5 degrees of freedom (DF), confidence level = 82 %. The
difference from the exact result (y/v=7/4) is small, but it is roughly equal
to six standard deviations. Possibly this is due to a small correction-to-
scaling effect (which has become statistically significant due to the very

* “Confidence level” is the probability that ¥ would exceed the observed value, assuming that
the underlying statistical model is correct. An unusually low confidence level (e.g., less than
5%) thus suggests that the underlying statistical model is incorrect—the most likely cause
of which would be corrections to scaling.

2! We will hereafter use P, ZF, and X2 to designate the points where the results apply. We
use DIs to denote the Ising model.
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high precision we have obtained on the smaller lattices). For L, =128 we
have

%(P)=%(P)= 1.744 +0.004 (4.28)

with y*=1.54 (2 DF, level =46%), which is now fully compatible with the
exact result.

For the ZF point {Table V), our preferred estimates are obtained for
L.i.=128:

’-v’(ZF) —1.750 + 0.004 (4.29)
with y?=1.54 (1 DF, level =22%), and
%(ZF) = 1.668 + 0.005 (4.30)

with y*=1.57 (1 DF, level =21 %). The agreement with the exact results
(y/v="7/4 and y'/v=5/3) is extremely good, and the yx* is acceptable.

For the point X2 (Table VII), we get our preferred estimates for
Lmin = 32

%(xz) =1.750 + 0.001 (431)
with y2=0.98 (3 DF, level 81%), and

Y
=

v

X2) = 1.605 + 0.001 (4.32)

with y*>=1.24 (3 DF, level =74%). The agreement with the exact values
y/v=1/4 and y'/v = 1.6045 is again extremely good, as is the y°.

Finally, we reanalyzed the MC data of Baillie and Coddington'” for
the Ising model (Table III). Our preferred fit is for L., = 64:

Y (DIs) = 1.7501 £ 0.0002 (4.33)

v
with y*=0.75 (3 DF, level =86%). Both the high accuracy of the result
and the agreement with the exact answer (y/v=7/4) are remarkable.

4.4.2. Specific Heat. Here we have to distinguish between the
4-state Potts model and the other two points (ZF and X2). For the latter
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Table X. Estimates’ of a/v and z,, , for the 4-State Potts Model at Criticality
As a Function of the Points Involved in the Fit (L >L,;,)

Cy~L" Ty, & ~ L7

Lyyin afv X it & e

16 0.749+0.003 13.82 (DF 5, level 2%) 0.867 +0.009 4.32(DF 5, level 50 %)

32 0756 +0.004 5.66 (DF 4, level 23 %} 0.876 +0.012 3.16 (DF 4, level 53%)

64 0.762+0.005 1.84 (DF 3, level 61%) 0.887+0.017 2.26 (DF 3, level 52%)
128  0.768 +0.009 1.40 (DF 2, level 50%) 0.861 +0.033 131 (DF 2, level 52%)
256 078140019 0.71 (DF 1, level 40%) 0.880+0.067 1.20 (DF 1, level 27%)
512 0824 4+0.054 0.00 (DF 0, level 100%) 1.080+0.194 0.00 (DF 0, level 100% )

“ Errors represent one standard deviation, DF stands for the number of degrees of freedom,
and “level” is the confidence level of the fit (i.e.. the probability that x* would equal or
exceed the observed value, assuming that the underlying statistical model is correct). The
preferred fits are given in boldface.

points the analysis is a little bit more complicated, as we have to deal with
a specific-heat matrix C,, [cf. (4.24)] instead of a single number.

For the 4-state Potts model (Table IV) we first tried to fit the data to
a pure power-law function C,, = AL*". The results of this fit (as a function
of L,,,) are contained in Table X. We observe a systematic trend toward
higher values of a/v as we increase L,;,. For L., > 64 the y* values are
acceptable. Nevertheless, being conservative, we take as our preferred fit
L., =128 (boldfaced in Table X):

%‘(P) —0.768 +0.009 (4.34)

with y*> =140 (2 DF, level = 50%). Clearly, the agreement with the exact
known result («/v = 1) leaves something to be desired! A similar result was
reported by Wiseman and Domany:*" /v =0.747 4+ 0.003, using lattices
16 < L <128. As a matter of fact, if we fit our own data restricted to the
interval 16 < L < 128, we obtain a/v = 0.741 +0.004 (3* = 3.07, 2 DF, level =
22%), which is consistent with the value of Wiseman and Domany. Thus,
as we go to larger lattices we obtain estimates of a/v that are closer to the
exact value, but the improvement from L., =128 to L, . =1024 is
extremely slow.

However, we already know on theoretical grounds'!'®'® that the true
leading behavior of the specific heat involves a multiplicative logarithmic
correction

C[./ ~ L lOg_3/2 L (4.35)



Swendsen-Wang-Type Algorithm for Ashkin-Teller Model 327

Table XI. Results” of the Weighted Least-Square Fits for the Specific Heat of
the 4-State Potts Model at Criticality to Function C,=AL%" log~%2L
and Cy=A'log™ "L

Cu~L*log=**L Cy~Llog™" L

2

afv r r Ve

16 1118 £0.003 236.01 (DF 5, level 5 x 10~*") 1.008 £ 0.011 86.06 (DF 5, level 5x 10~'")

32 1.086 + 0.004 5423 (DF 4, level 5x 107") 1.102+£0.016 24.02 (DF 4, level 0.008 %)

64 1.062 +0.005 9.47 (DF 3, level 2%} 1.185+0.025 533 (DF 3, level 15%)
128 1.039 + 0.009 0.45 (DF 2, level 80 %) 1.286 + 0.052  0.34 (DF 2, level 84%)
256 1.030 £ 0.019 0.19 (DF 1, level 66 %) 1.320+£0.115  0.23(DF I, level 63 %)
512 1.052+0.054 0.00 (DF 0, level 100 %) 1.158 £0.355  0.00 (DF 0. level 100 %)

“The exact results are a/v=1 and p=3/2, respectively. For each fit we show the x°, the
number of degrees of freedom (DF), and the confidence level (“level”).

In the range of L considered here, the logarithmic factor could be
mimicked by a power-law function, thus yielding an “effective” critical
exponent {«/v).; lower than a/v=1 (in agreement with our numerical
results). To check this, we tried to fit our data to the function
C, = AL* log=*? L (see Table XI). We observe that the estimates for a/v
are much closer to the exact value. These estimates are slightly /iigher than
1, but there is a clear systematic trend toward smaller values of a/v as L,
is increased. For L, =128 we obtain a reasonable fit with

(:—:(P) =1.039 +0.009 (4.36)

with ¥ =045 (2 DF, level =80%). However, this value still differs from
the true one by four standard deviations.

Alternatively, we can fit the data to the trial function C,=A4"log™” L
(see again Table XI). We also observe a systematic trend toward the exact
value p=3/2=1.5, but the estimates of p are not compatible within errors
with the exact value. Our preferred fit occurs for L, ;, =128,

p(P)=1.286+0.052 (4.37)

with y?2=0.34 (2 DF, level =84%). This estimate is again four standard
deviations away from the expected result.

In summary, it is extremely difficult to obtain a reliable estimate of a/v
when the leading term of the specific heat behaves like (4.35). For lattices



328 Salas and Sokal

up to L =1024 it is impossible to see anything even resembling the correct
exponent a/v=1. On the other hand, if we introduce in the fits some
theoretical information (e.g., the power of the logarithmic term) the
estimate improves a lot, but it is still four standard deviations away from
the expected result. We need to go beyond L = 1024 to disentangle the true
asymptotic behavior of the specific heat.

For the ZF and X2 models, we have to deal with a specific heat matrix
C, as in (4.24). First we computed all its matrix elements; then we
diagonalized it to obtain the eigenvalues C,; ..., and Cy .., and the corre-
sponding eigenvectors W, =(1,a) and Ww,_,,=(a, —1) [cf (4.25)]. The
error bars on the eigenvalues and on the eigenvector parameter a are com-
puted by using the standard error-propagation formulas. The minimum
eigenvalue Cp, .. is expected to tend to a finite constant as L — oo (i.e., to
have critical exponent zero), as there should be a marginal operator
responsible for movements along the critical self-dual curve (2.8). The max-
imum eigenvalue Cj, .. is expected to grow as L*" with the power given
by (2.10b). In general the value of the parameter ¢ varies with the lattice
size L, and in the limit L — o0 we expect a to tend to the value

a, = —4icoth2J (4.38)
[cf. (4.26)]. In Table XII we show the evolution with the lattice size of the

parameter a corresponding to the models ZF and X2, while in Tables V
and VII we report the eigenvalues Cj; .., and Cy in-

Table XIll. Eigenvectors® of the Specific-Heat

Matrix C,,
L ZF X2
16 —0.86034 + 0.00065 —0.77163 4+ 0.00052
32 —0.88553 + 0.00059 —0.79294 + 0.00042
64 —0.89995 + 0.00052 —0.80885 + 0.00037
128 —0.90944 + 0.00039 —0.81835 + 0.00034
256 —0.91529 +0.00035 —0.82414 4+ 0.00031
512 —0.91858 + 0.00021 —0.82828 + 0.00028
&« —0.92388 (exact) —0.83771 (exact)
“ They are parametrized such that W, = (1, a) corresponds to the smaller eigenvalue Cp nia
and 1, = (a, —1) to the largest eigenvalue Cj ... For the models ZF and X2 we give the

measured values of the parameter a as a function of the lattice size L. The bottom row
(L = o) shows the theoretically predicted infinite-volume value of a taken form (4.26) [see
text].
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ZF Model. If we try to fit Cy ... for the point ZF (Table V) to a
pure power-law function, we obtain estimates of «/v which are quite consis-
tent among themselves for L, ;, = 64. The fit for L, =64 gives

% (ZF) = 0.663 + 0.006 (4.39)

with y*> = 1.12 (2 DF, level = 57%). This result agrees well with the theoreti-
cal prediction a/v =2/3.

The minimum eigenvalue of €}, is almost constant within statistical
errors for L >128. As a matter of fact, the fit to a constant C¥, ., is very
good for L., =128: the result is C¥% ;. =0562+0.004 with x>=0.55
(2 DF, level =76%).

Finally, from Table XII we see that the eigenvector parameter a
appears to be tending as L — oo to the predicted exact value (4.38). We can
test this convergence quantitatively, and also extract an estimate of the
correction-to-scaling exponent 4, by fitting the data to a—a,, = AL™4. We
obtain a reasonable fit already for L, ;, = 16:

A(ZF)=0.715 £ 0.008 (4.40)

with »*=1.08 (4 DF, level =90%).

X2 Model. The estimate of a/v for the point X2 (Table VII) is
not well stabilized: it decreases systematically as L., increases (see
Table XIII), and for L,,;, <64 the y* values are horrible. Our preferred fit
1s obtained for L ,,;,=128:

% (X2) = 0.438 + 0.008 (4.41)

with y*=0.32 (1 DF, level =57 %). Notice that the y value is now very
reasonable. This estimate is still three standard deviations away from the
exact result o/v =0.4183, but the trend is in the right direction. Moreover,
for L.;,=256 we obtain a slightly lower estimate, o/v=0.430+0.017,
which is now consistent with the the exact result. The smallness of the dif-
ference between the observed and the true values (less than 0.02) suggests
that multiplicative logarithmic corrections (as occur in the Potts case) are
absent at this point; we are most likely seeing the effects of additive correc-
tions to scaling of the form L~ with 4 on the order of 0.5 (or conceivably
1/log L). Wiseman and Domany* reported a value a/v=0.542 4 0.008,
which is much larger than the exact one and than ours. This is surely due
to the fact that they considered only rather smaller lattices (16 < L < 128).

822/85/34-3



330 Salas and Sokal

Table Xill. Estimates“ of a/v and z,,, , for the Point X2 As a Function of the
Points involved in the Fit (L>L,;,)

Crt max~ L log ™2 L Ti g, ~ L7

i, 8,

2

L afv x Zinn. 4., z

min

16 0.484 +0.002 76.78 (DF 4, level 8 x 107'¢) 0.534 +£0.007 5.16 (DF 4, level 27 %)
32 0.469 + 0.003  26.22 (DF 3, level 9x 10~%%) 0.527 +£0.011 4.29 (DF 3, level 23%)

64 0.455+0.004 7.50 (DF 2, level 2%) 0.509 +0.016 2.38 (DF 2, level 30%)
128 0.438+0.008 0.32 (DF 1, level 57 %) 0.477 £ 0.028 0.39 (DF 1, level 53%)
256 0430+£0.017  0.00 (DF 0, level 100%) 0.510+0.061 0.00 (DF 0, level 100%)

“We also show the x* the number of degrees of freedom (DF), and the confidence level
(“level”) of each fit.

To check this, we fit the subset of our data corresponding to 16 < L < 128,
and obtained a/v =0.502 +0.003 with y>=8.81 (2 DF, level =1.2%).

The smallest eigenvalue is again consistent with a constant C¥ ..
within statistical errors for L > 128. For L_;, =128 the result is C¥ .=
0.303 £0.002 with y>*=1.17 (2 DF, level =56 %).

Finally, the behavior of the eigenvectors is rather similar as the ZF
case: they approach the predicted exact value (4.38) as L grows. If we fit
the data to a —a_, = AL™4, we obtain for L, =128 the value

4(X2)=0.518+0.024 (442)

with ¥y>=0.02 (1 DF, level =88%). This value for the exponent 4 agrees
well with the rough estimate obtained from the corrections to scaling in the
specific heat.

Ising Model. We also computed the effective exponents (a/v).y
associated with a pure-power-law fit to the specific heat of the Ising model,
for various intervals of L. Such an effective exponent will be useful as a
standard of comparison for the numerically extracted estimates of the
dynamic critical exponent z;, , (see Section 4.5.1 below). First we com-
puted the exact values of the specific heat for a finite lattice, using the for-
mulate of Ferdinand and Fisher:*> see Table III. We then performed a
power-law fit, with the (fake) error bars chosen so as to give all points the
same statistical weight; we took L., =512 and considered various values
of L... As expected, (a/v),r is not stable: it decreases as L, grows,
ranging from (a/v);=0244 for L_,,=8 to (a/v)er=0.162 when
L. ... =256.
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4.4.3. Second-Moment Correlation Length. The quantity
x(LY=¢&(L)/L is expected to approach a constant x* as L — 0. This con-
stant is characteristic of the massless Ashkin—Teller field theory on a con-
tinuum torus with aspect ratio 1, and in principle it should be calculable
via conformal field theory (although to our knowledge this calculation has
not yet been done).

Our Monte Carlo data are consistent with this behavior. First we tried
to fit the values for L > L ;, to a constant, using the weighted least-squares
method. In Table XIV (fits marked C) we report our best estimates for x*.

It is intriguing to note that the values of x* are all quite close to 1,
though the differences from 1 are 7-10 standard deviations for the points
ZF and X2. This (near) agreement might be due to the fact that all these
three models have the same central charge (¢=1). However, a detailed
study is needed to understand the observed variations. On the other hand,
the value of x* manifestly decreases as we move toward the point K=0,
where the o spins are decoupled from the ¢ spins. At that point we expect
xk=0.

Table XIV. Estimates of x* for the Three Points of the AT Self-dual
Curve Considered*

Point Type L i X*(=xk=x7) X
Potts C 128 1.002 + 0.003 2.56 (DF 3, level 46%)
Potts L 16 1.023 +0.007 1.94 (DF 5, level 86 %)
POint TYPC Lmin '\‘:() Xz
ZF C 16 1.015 +0.002 4.12 (DF S, level 53%)
X2 C 64 0.980 + 0.002 1.80 (DF 3, level 61 %)
X2 L 16 0.965 + 0.006 1.15 (DF 4, level 89%)
X2 4=12 16 0.975 +0.003 1.08 (DF 4, level 80%)
Point Type Loin X x
ZF C 16 0.852 £ 0.002 2.26 (DF 4, level 69 %)
X2 . C 256 0.737 4+ 0.002 0.57 (DF 1, level 45%)
X2 L 16 0.729 £+ 0.004 2.08 (DF 4, level 72%)
X2 4=1/2 16 0.736 + 0.002 2.09 (DF 4, level 72%)

? For each point we present the result of the least-square fit to a constant {C) or to a function
of the type (4.44) (L). For the X2 model we also include the fit to constant plus corrections
of order 4 =1/2. We also include the y?, the number of degrees of freedom (DF), and the
confidence level (“level™).
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We can also study the rate at which &£(L)/L approaches x* for these
three models. For the 4-state Potts model we already know'>® the answer
for the case of the exponential correlation length (., = I/mass gap) on an
L x oo cylinder. The behavior for large L is

Cop(L) 4 24 1 ( 1 >
2 = _= 443
L n® n’log2L +o log L (443)

Of course, there is no guarantee that the asymptotic behavior of
& econd-moment ON @ torUS is the same as that of £, on a cylinder, but it is
a plausible guess. Therefore, we tried to fit our data to the function

A
S(L)/L=x*+—— 4.44
¢(L)/L=x +log2L (4.44)
The result can be found in Table XIV (fit marked L), and in more detail
in Table XV. The y? of this fit is excellent, but roughly the same values of

Table XV. Estimates of x{L) As a Function of the Number of Points Included
in the Fit (L >2L,;,) for the 4-State Potts Model at Criticality

NLy=x* X(L)=x*+ Aflog 2L
Lnin x* r x* z

16 0.9943 4+ 0.0015 19.00 (DF 6, level 0.4%) 1.0228 + 0.0071  1.95 (DF 5, level 86 %)

32 0.9965 4+ 0.0017 10.19 {DF 5, level 7%) 1.0274 + 0.0107 1.62 (DF 4, level 80%)

64 0.9993 4+ 0.0021  3.98 (DF 4, level 41 %) 1.0247 £ 0.0165 1.58 (DF 3, level 66 %)
128 1.0023 +0.0032  2.56 (DF 3, level 46 %) 1.0380 + 0.0326 1.35 (DF 2, level 51 %)
256 1.0050 + 0.0046  1.92 (DF 2, level 38 %) 1.0683 + 0.0713 1.12(DF 1. level 29%)
512 10118+ 0.0075  0.57(DF 1, level 45%) 0.8436 4+ 0.2235 0.00 {DF 0, level 100 %)

1624 0.9968 £ 0.0211  0.00 {DF 0, level 100%;}

.\1L)=,\""+A/\/z xL)y=x*+A/L
Lo x* e x* 7
16 1.0098 + 0.0041 1.94 (DF 5, level 85%) 1.0023 +0.0026 3.38 (DF 5, level 64 %)
32 1.0118 4 0.0055 1.65 (DF 4, level 80%) 1.0051 + 0.0035 1.92 (DF 4, level 75%)
64 1.0109 £ 0.0078 1.62 (DF 3, level 65%) 1.0060 4- 0.0050 1.86 (DF 3, level 60%)
128 1.0163+0.0132 1.36(DF 2, level 51%) 1.0100 + 0.0080 1.44 (DF 2, level 49%)
256 1.0283 + 0.0257 1.07 (DF 1, level 30%) 1.018940.0147 0.93 (DF 1, level 30%)
512 0.9557 £ 0.0745 0.00 (DF 0, level 100% ) 0.9798 +0.0431 0.00 (DF 0, level 100%)

“ We show the fit of x{L) to a pure constant, as well as to a constant plus some decreasing
functions. We also include the x2, the number of degrees of freedom (DF), and the con-
fidence level (“level”) for each fit.
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% could have been obtained using corrections of the type 1 /\/I_J or 1/L (see
Table XV). The values of x* vary a little bit from one fit to the next (in
some cases by several standard deviations). For a full understanding of
these results, it would be very helpful to have a theoretical prediction
analogous to (4.43) for the second-moment correlation length & on a torus.

For the rest of the self-dual curve we have no theoretical hint
analogous to (4.43), so we must fit our data empirically. For the ZF model
the fits of x,, and x,, to a constant are so perfect (L,,,=16) that no
further conclusions could be obtained (see Table XIV). For the X2 model,
by contrast, the fits to a constant need a much higher value of L _;,,
indicating that the corrections to scaling are statistically significant. First
we tried a correction of the type x = x* + AL~ with 4 = 1/2; this value is
suggested by the result (4.42) obtained in the preceding subsection. The fits
are very good, even for L, =16 (see Table XIV). Similarly good fits are
obtained also with 4=1/4, 1, 2. Finally, we also tried a logarithmic fit as
in the 4-state Potts model. The results (marked with L in Table XIV) are
also excellent. It is worth mentioning that the estimates of x* and x¥* vary
slightly from one type of fit to another, in some cases by several standard
deviations.

4.5. Dynamic Quantities

In this section we analyze both the integrated autocorrelation times
T ¢ and the exponential autocorrelation times 7., .. Using standard
power-law fits to the Ansitze 7, , = AL"™ ¢ and 1., = AL™" ¢, we can
extract the dynamic critical exponents.>> However, the existence of multi-
plicative logarithmic corrections to the specific heat for the Ising and
4-state Potts models suggests, in view of the Li-Sokal bound, that similar
multiplicative logarithmic corrections might occur also in the autocorrela-
tion times. We shall look for such corrections in two ways:

(a) By fitting to an explicit logarithmic Ansatz t=AL(log L)”.

(b) By studying the ratio 7/Cj (for the X2 and ZF models we con-
sider the ratio ©/Cy max)-

4.5.1. Integrated Autocorrelation Time: Power-Law Fits.
From Tables’ IV, VI, and VIII we see that the integrated autocorrelation
time for .#> (resp. .#2 and .#2)) is always slightly smaller than the

** We emphasize that in general z;,, . need not be equal to Zexp, ¢- However, in SW-type algo-
rithms it does appear that the autocorrelation function of the energy is very close to a pure
exponential, so that 7, s/Teyp, s approaches a constant (in fact, a constant very close to 1)
as L — o0. So in these algorithms we do empirically seem to have 7iy s = Texp, 4+
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integrated autocorrelation time for & (resp. &, and &,,). Furthermore, we
see that the ratio of those autocorrelation times is a constant (i.e., inde-
pendent of L) within statistical errors

Tint .42 (p) = 0.978 4 0.011 (4.45a)

Tint.

Tint. .2, Tint, .2,

(ZF)=0.944 1+ 0.018;

I-inl, & tin(. Seor

(ZF)=0.887+0.020 (4.45b)

Tinw .12 Tint. . /2,
—=¢(X2)=0.857 +0.018; ——=(X2)=0.8034-0.017 (445c¢)

Tint. &, Tint, &4

Likewise, if we look at the ratio ty, 4, /T..p. «, fOr the points ZF and X2,
we see that in both cases that ratio is also consistent with a constant:

Tint, £ (ZF) = 0.960 + 0.017 (4.46a)

Tint, #.,

Tint, 6 (X2)=0.962+0.013 (4.46b)
int, &

It therefore suffices to consider the critical behavior of 7, . (for Potts) and
Tin. s, (for ZF and X2); all other quantities will have the same dynamic
critical exponent.

Potts Model. 1f we fit the data from the 4-state Potts model point to
a pure power-law function 7;,, , = AL ¢ we obtain a good fit already for
L,.in =16 (see Table X). However, there seems to be a weak upward trend
with L_;., so to be conservative we choose L., =32 as our preferred fit:

Zin «(P)=0.876 +0.012 (4.47)

with x*>=3.16 (4 DF, level = 53%). Notice that this value of =,  is strictly
greater than the effective exponent (a/v),;=0.768 obtained by a pure
power-law fit [see (4.34)]. This implies that the Li-Sokal bound (1.1) is
satisfied, but it is apparently not sharp. We can also compare the
power-law estimates z;, , and a/v for each L, separately (see Table X),
and again conclude that the Li-Sokal bound is always satisfied, but that it
is not sharp. Note, however, that this effective exponent (z;,, s — @/V) X
0.11 is consistent with the true behavior of r,, /C; being either a small
positive power or a logarithm.

If we compare our results for the 4-state Potts model with the embedd-
ing algorithm (see Table IV) to those quoted in ref. 9 (which correspond
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to the direct algorithm of Section 3.1), we see that the ratio of the two
autocorrelation times is more or less constant within statistical errors, and
that there is no systematic trend as L grows. For these reasons, we con-
clude that they are proportional in the limit L — o0.*?

T direct

—nd_(P)=1.516+0.035 (4.48)

int, &

In particular, the direct and embedding algorithms belong to the same
dynamic universality class (as was of course to be expected). It follows
from (4.48) that our algorithm is 150% as effective as the standard SW
algorithm for this model in terms of autocorrelation times. However, our
algorithm needs roughly twice the CPU time for a complete sweep over the
lattice (there are twice the number of points as in the Potts formulation);**
s0, in the end, the embedding algorithm is about 25% less efficient than the
standard SW algorithm for the 4-state Potts model at criticality.

Our estimate of z;,, , for a pure power-law fit, 0.876 +0.012, is very
close to the result =z, s ,c=092+0.01 found by Wiseman and
Domany'** for the single-cluster version of the direct algorithm.?*: *® Thus,
the 2D Potts model with ¢=4 conforms to the behavior found pre-
viously'® for the 2D Potts models with ¢=2,3, in which z,, s ¢~
Zin 5. sw- On the other hand, this almost equality seems not to occur for
Ising models in dimension d > 3./'%!3

ZF Model. For the ZF point (Table VI), the estimates for z, . are
quite stable, giving for L, =32

Zine s {ZF) =033 +0.014 (4.49)

31t is therefore hardly surprising that the dynamic critical exponent reported in ref. 9 for a
pure power-law fit, z;,, » =0.87 £0.02, is virtually identical to our value (4.47). If we fit our
data for L <256 as in ref. 9, we obtain (for L, =64) z;,, s =0.900 +0.025 with x> =0.63
(1 DF, level =43%). This result is also compatible within errors with the one reported in
ref. 9.

* We have directly measured the CPU ration between these two algorithms and it is ~ 1.9,
i.e., very close to the guessed value of 2.

* We emphasize that =, s i is the dynamic critical exponent for the autocorrelation time of
the single-cluster algorithm measured in units of “equivalent sweeps.” This is d —y/v=1/4 less
than the dynamic critical exponent for the autocorrelation time measured in units of
“cluster hits.”

3 Actually, the Wiseman-Domany result was obtained with 16 < L < 128. If we fit our own
data with this constraint, we get for L, =32 the value z;, s =0.876+0.021 with y*=196
(1 DF, level =16%). So our estimate of z;, s is not semsitive to L,,; and it differs from
the Wiseman-Domany estimate of z;,, s ;c by two standard deviations.
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with y?=1.48 (3 DF, level = 68 % ). Once again, the Li-Sokal bound holds,
but it is not quite sharp, as here a/v =2/3.

X2 Model. At the point X2 (Table VIII), the corrections to scaling for
Zim. s, Seem to be significant, just as they are for Cy .« (see Table XIII).
The estimates for z;, , tend to be systematically smaller as L, grows
(although this effect is only on the borderline of statistical significance, due
to the rather large error bars). Qur preferred fit uses L _;, =128:

Zine. 6, (X2} =0.477 £ 0.028 (4.50)

with y*=0.39 (1 DF, level = 53%). Once again, the Li-Sokal bound holds,
but is not quite sharp, as «/v=0.438 (our numerical estimate) or 0.4183...
(exact value).

Also here we can compare our result with the one found by Wiseman
and Domany* for the single-cluster algorithm. They obtain z;, , ,c=
0.61 +0.01. This value is very far from ours, even if we fit our data for
16 < L <128 to facilitate the comparison with their data: in that case our
preferred fit is z,, ,=0.5534+0.012 for L,;,,=16 and y*=032 (2 DF,
level =85 %). Here the difference between z;, s ,c and z, 4 sw is nearly
four standard deviations, so it seems that the two algorithms belong to dif-
ferent dynamic universality classes.

Ising Model. Finally, we reanalyzed the data of Baillie and
Coddington'”’ for the 2D Ising model (see Table III). Our preferred fit is
for L ;, =100, giving

Zin (DIs) = 0.240 + 0.004 (4.51)

with y?>=1.67 (2 DF, level =43%). In this case the Li-Sokal bound is
clearly satisfied, as {a/v).;=0.173 when L, = 128 {see Section 4.4.2); and
once again the bound appears to be not quite sharp.

In summary, the Li-Sokal bound is fulfilled in all cases, but
apparently not as an equality: the effective exponents (z;,, » — o/v).y range
from ~0.04 to ~0.11. However, we know that in two of the four cases—
namely, the Ising model and the 4-state Potts model—the leading behavior
of the specific heat is not merely a power law, but rather contains multi-
plicative logarithmic corrections. So the question of the sharpness of the
bound cannot be answered until we take into account the exact leading
term of the specific heat. This will be done in the next subsection.

4.5.2. Might the Li-Sokal Bound Be Sharp Modulo a
Logarithm? It is well known that the true leading behavior of the
specific heat is not given by a/v=0768 (or any other power law) for
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the 4-state Potts model, nor by «/vy=10.173 {or any other power law) for
the Ising model. Rather, the behavior is L log =*? L and log L, respectively.
A similar problem arises for the autocorrelation times: to answer the ques-
tion of the sharpness of the Li-Sokal bound, it is necessary to guess the
“exact” leading behavior of z;,, . In analogy with C,, we may entertain
the possibility that z;,, . contains a multiplicative logarithmic term (at
least for the Ising and 4-state Potts models).

Our first approach is to consider the ratio 7, s/Cj.?" For all four
models, we find that this ratio is an increasing function of the lattice size
L. We then distinguish three possible asymptotic behaviors: If 7, »/Cy
tends to a constant as L — oo, then the Li-Sokal bound (1.1) is sharp; if
it grows like some logarithmic function, then the bound is sharp modulo
a logarithm; and if it grows like some power law, then the bound 1s not
sharp. It is reasonable to hope that the ratio 7y, /Cjy will be less affected
by corrections to scaling than either Cj or 7, s separately. (Of course,
this hope may also be false!) For the Ising model we took t;, , from ref.
7 and the specific heat from the exact finite-volume solution given in ref.
55. For the other three models, we used our numerical data; in computing
the error bar on the ratio, we used the triangle inequality, which of course
yields only an upper bound on the true error bar. This overestimate of the
error bars in the three non-Ising cases should be taken into account when
interpreting the results.

We tried to fit the ratio 1y, ,/Cy to various different Ansdtze (see
Table XVI1). The first is a pure power-law function. In all cases the fit 1s
very good and the estimates of the power are very small (between 0.05 and
0.12); the power seems to increase slightly as we go from the Ising model
to the 4-state Potts model. Note also that the fit for the Ising model
requires L ;. =100 in order to get a reasonable y°, while for the other
three models an excellent y? is obtained already for L, =16. This arises
from the very accurate data in the Ising case, which permit the observation
of very small corrections to scaling, in contrast to the rather larger (and
overestimated!) error bars in the three non-Ising cases.

Often such small powers indicate that the true behavior is logarithmic.
Indeed, a logarithm can be very well mimicked by a power law over any
not-too-wide range of L. We therefore tried various combinations of
logarithmic functions. The first one was a function 4 log” L. The quality of
fit for the Ising model is rather inferior to that obtained with a power-law
function, although the confidence level is still reasonable (27 %). However,
for the three other models, the fits are very stable and give excellent values

" More precisely, we consider 7, 4/Cy for the Ising and 4-state Potts models, and
Tige, ¢/Cttmax for the X2 and ZF models.
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Table XVI. Results of Fitting the Ratio T,, ,/C, for Different Ansitze
(Power-Law, Logarithmic, and Bounded)} for All Models”
Ansatz Ising X2 ZF 4-state Potts

AL p=0.060 +0.004 p=0051 +0.009 p=0077+0.012 p=01181£0012
72=1.02(2 DF, 60%) 72=128{4DF 86%) »*=123(4DF,87%) »*=139(5DF,93%)
L in =100 Loin=16 Lain=16 Lyw=16

Alog" L p=0.315+£0020 p=0263 +0.061 p=0311+0049 p=03543+0.073
7=259(2DF,27%) 7*=063(3DF.89%) 5 =115(4DF.89%)} »*=192(4 DF,75%)
Loy =100 Loyw=32 Lan=16 Lyn=32

A+BlogL y'=143(2DF,59%) ;*=143{4DF.84%) »*=103(4DF.91%) »*=198(5DF.85%)
Ly =100 Lo =16 Lyn=16 Low=16

A 77=3674(1DF. 107") ,°=146(2DF.48%) »*=077(2DF 68%) =156 (2DF.46%)
Ly =256 L,,=128 Lon=128 L,,=1256

A+BlogL 7 =400(1DF.5%)  52=090(3DF.76%) »°=082(3DF,85%) >=0.60(3DF.75%)
Loin=128 Lon=32 Loyin=32 Loy =64

A+B/L'* s =257(2DF,28%) 7*=063(3DF.89%) 7*=101(4 DF,91%) 72=0.77(3DF,86%)
L =100 Lyn=32 Loaw=16 Loy =064

A+ BiLM 77 =404 (2DF, 13%) 72=067(3DF,88%) »°=133(4DF,86%) 7*=0.66(3 DF.88%)
Lo =100 Lyw=32 Lyu=16 L,=64

A+B /L 4=331(1DF,2%)  ;°=099(13DF.80%} 4 =083 (3DF,84%) »°=064(3 DF.$9%)
Lo,=128 Lyn=32 Loa=32 Lo =64

A+ B/L 2 =1067(1 DF,0.1%) 4 =064 (2DF. 42%) ¢ =018(2DF.91%) z*=1.11(3DF,77%)

L,.=128

nan

L,.=64

nug

Lo =04

nin

L ..=64

LICH

“We only show the “best” fits for each case. For each of them we give the value of the x°,
the number of degrees of freedom (DF). the confidence level, and the L, used. For the first
two power-fits we also give the estimate of that power.

of the y*. Next we tried a fit to 4 + B log L; this gives very good results for
all four models.

Finally, we tried to check whether the ratio 7, ./C, approaches a
constant as L — oo. First we tried a fit to a pure constant 4. Even by eye
one can see that the values of 1y, ./Cy, for different L exhibit statistically
significant deviations (e.g., consecutive values differing by at least two
standard deviations) for L < 128, even for the non-Ising models, where we
already know that the error bars are overestimated. So, not surprisingly, it
is impossible to get a decent fit to a constant with L, < 128. However, for
the non-Ising models with L, > 256, the ratios t;, ,/C, are consistent
with a constant A, at least if one takes at face value the overestimated error
bars: see Table XVI. It follows that no reliable information can be obtained
on the manner of convergence to a constant for these models if one takes
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L .. >256. Next we tried fitting the ratio 7, »/Cy to A+ BL™9 with
4=2,1, 1/2, 1/4, and 1/8, and also to 4+ B/log L (“4=0xlog”). For
all the models, the fits with 4 =1, 2 are both implausible and unreliable,
as the parameter B becomes very large (|B| > 10) and does not stabilize as
L ... grows. For the Ising model, only the fits with 4=1/4, 1/8 have
reasonable y? values (confidence levels of 14% and 28%, respectively).
Note, in particular, that the logarithmic-correction Ansatz gives a poor fit
(level 5%). For the 4-state Potts model we always obtain unreasonably
large values of |B| ( 2 10), so we cannot trust these fits, even if they have
reasonable values of y>. We therefore rule out this scenario for the 4-state
Potts model. The good values of the y? are surely due to the overestimated
error bars. This is a warning against trusting the x” values for the other two
non-Ising models. Finally, we get reasonable fits for the X2 and ZF models
for 0 < 4 <1/2; but perhaps the good y? values are not to be trusted.

Let us discuss the above fits. For the Ising model we have been able
to associate a reliable error bar to the ratio 7, ./Cy, so we can trust the
%~ values. We conclude that an asymptotically bounded ratio with additive
corrections like either 4 =0 xlog or 4 > 1/2 is very unlikely to occur. The
most plausible scenarios (i.e., highest confidence levels) are the pure power
law with p=10.060+0.004 or a simple logarithmic growth A+ Blog L.
However, a logarithmic power-law behavior with p=0.315+0.020, or an
asymptotically bounded behavior with additive corrections given by
1/8 £ 4 < 1/4 cannot be completely ruled out.

For the other three models we cannot trust the x> values, as the error
bars are overestimated. We have used the following criteria to interpret our
results and decide which are the “best” fits:

o Absolute y* value. If the x* value of a given fit is not good, then the
fit is surely poor, as all the error bars are overestimated.

 Relative x* values. 1If two fits to the same data exhibit vastly dif-
ferent values of x?/DF, then the fit with the larger y*/DF can be
considered less plausible (all other things being equal).

o Reasonable results. When fitting to a constant plus additive correc-
tions (A4 + BL ™), we expect that the parameter B should remain
not too large (e.g., |B| <10). If this does not occur, we tend to dis-
trust the fit.

o Value of L., If L., is taken large enough (i.e., >256), then we
can fit the data for the three non-Ising models with almost any
additive-correction Ansatz, as all the values of 7, ,/Cj are already
consistent with a constant within the (overestimated) errors. Thus,
given two fits with similar y*/DF values, we tend to trust more the
one with smaller L

min*
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The 4-state Potts model is the clearest case. The asymptotic constancy
of 7, »/C is clearly ruled out due to unreasonably large parameter B in
all the fits. Moreover, all the asymptotic-constant fits need L,,;,=64 to
obtain a decent x> (even with the overestimated error bars), whereas
L,...=16 is sufficient for the pure power-law and A + Blog L scenarios.
Even the logarithmic power-law Ansatz needs L, = 32 to achieve a com-
parably good x> If we consider the y* when L, = 16, we see that the best
fits have y>=1.39 (power-law) and 198 (A4 + Blog L), while the others
have 347 (4=1/8)) 3.64 (4 log” L) and 5.61 (4=1/4). We conclude that
the two most likely scenarios are the pure power-law with p =0.018 +0.012
and the simple logarithmic behavior 4 + B log L.

For the X2 model we arrive at the same conclusion. The best fits need
L..in =16, and the rest need at least L, = 32. If we consider the y* when
L..»=16, we see that the best fits have y*> =128 (power-law) and 1.43
(4 + Blog L), while the others have y*=1.96 (4=1/8), 2.39 (logarithmic
power-law) and 2.68 (4 =1/4).

Finally, the ZF model is the least clear case. Here most of the fits are
reasonable with L_;, =16. Thus, we cannot decide among the pure-power
scenario, the two logarithmic scenarios, and the scenario of asymptotic
constancy with corrections to scaling given 1/8 <4 < 1/4.

On theoretical grounds one might expect some kind of “continuity” in
the behavior of the ratio 7, ,/Cjy along the self-dual curve: that is, one
might expect the same scenario to hold everywhere along the curve (except
perhaps at the Ising and 4-state-Potts points, where there might be addi-
tional logarithmic effects). There are only two scenarios that are consistent
with the data in all four cases:

AL” with small p

A+BlogL (4.52)

Tin o /Cu= {
Using the theoretically known exact behavior of C,, we can investigate the
validity of the Ansitze (4.52) directly on 7, . For the Ising model these
Ansitze become

A'L?log L

A" log L+ B log?L (4.53)

Tin, o(DIs) = {

A fit to the first Ansatz with L, =100 has y>=1.35 (2 DF, level =51 %)
and gives p =0.051 4+ 0.004, while a fit to the second Ansatz with L ;, =100
has y>=1.69 (2 DF, level =43%). For the X2 model the Ansitze are

A!Lp+0.4183

(A+ Blog L) L041#3 (4.54)

Tint, 6,(X2) & {
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The first (pure power-law) Ansatz has already been studied in the preced-
ing subsection, yielding y*=0.39 (1 DF, level =53 %) with L, = 128 [see
(4.50)]; the second Ansatz yields y?=0.42 (1 DF, level =52%), also with
L. ... =128. So both fits are good, and there is nothing to distinguish them.
For the ZF model, the Ansitze are

AIL[J+2/3

(A+Blog L) L**? (4.53)

fie o (ZF) & {

The first (pure power-law) Ansatz has already been studied in the preced-
ing subsection, yielding y*> = 1.48 (3 DF, level = 68 %) with L, =32 [see
(4.49)]; the second Ansatz yields y*>=1.53 (4 DF, level =82%) with
L...»=16. So in this case there is a slight preference for the logarithmic
Ansatz. Finally, for the 4-state Potts model the Ansitze are

A'LP*" log=32 L

(A+Blog L) Llog=%*L (4.56)

fi u(P) & {

The first one gives the power p=0.1340.03 for L, =128 with ¥>=0.96
(2 DF, level =62%). The second one yields y*>=0.98 for the same L,
(2 DF, level =61 %). Finally, one can try the fit

T s(P)x ALlog ™" L (4.57)

in which one imposes =, =1xlog™ and attempts to find the multi-
plicative logarithmic exponent p’. Here the stability of the results is not
very good (see Table XVII). One could argue that the fit with L _; =16

Table XVIi. Results” for the 4-State Potts Model at Criticality of
Fitting the Aurocorrelation Time T;,, , to a Function AL log~® L and of
Fitting the Ratio C,/1,, , to a Function Blog™"L

Tis~Llog™” L Tin s ~log” L
L ia p X P s
16 0.538 +0.038 3.35DF S, level 65%) 0472 +0.049 3.64 (DF 5, level 60%)
32 0.563 £ 0.056 3.00 (DF 4, level 56%) 0.543+0.073 1.92 (DF 4, level 75%)
64 0.558 +0.087 3.00 (DF 3, level 39%) 0.630+0.112 0.85(DF 3, level 84%)
128 0.776 + 0.180 1.09 (DF 2, level 58°%) 0.5154+0.232 0.52(DF 2, level 77%)
256 0.736 £ 0.402 1.08 (DF 1, level 30%) 0.5934+0.518 0.50 (DF 1, level 48%)

512 —0.525+1.280 0.00 (DF 0, level 100%) 1.683 +1.632 0.00 (DF 0, level 100%)

“In both cases, we show the y?, the number of degrees of freedom (DF), and the confidence
level (“level™).
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already has a reasonable x” value, but we are inclined to be conservative
and prefer the fit with L;, =128 (which of course has much larger error
bars):

p'(P)=0.776 £ 0.180 (4.58)

with y?=1.09 (2 DF, level =58 %). This result is compatible (within two
standard deviations) with the expected value of p’=1/2. If we take into
account the value reported in Table XVI for the fit 7, /Cy=A4log” L
(p=0.543+0.073), we see that our estimates for p and p' are compatible
within errors (i.e., p' =3/2 — p=0.957 + 0.073). However, that value of p is
not compatible with the value of p’ = 1/2 corresponding to Ansatz (4.56b).
Actually, our estimate of p’ lies midway between the Ansatz and the value
coming from our estimate of p.

From the above results it is difficult to tell which is the true
asymptotic behavior of 7, »/Cp (and thus of 7, ) To disentangle this
we would need much larger lattices, as well as much better statistics on the
lattices L = 128.

Remark. Let us also test the conjecture proposed by Baillie and
Coddington'®’ for the Ising model:

T s ~(A+Blog L) L*" (4.59)

where f is the static critical exponent for the spontaneous magnetization;
note that f/v=1/8 everywhere on the AT self-dual curve. For the Ising
model, the fit is fairly good for L, = 100, giving y*>=0.50 (2 DF, level =
78% ). The same conclusion applies to the X2 model (L, = 128, y>2=0.42,
1 DF, level=52%) and to the ZF model (L, =128, y*=044, 1 DF,
level =51 %). However, the fit is rather poor for the 4-state Potts model:
for L, =256 we only get y>=4.43 (1 DF, level=4%).

4.5.3. Exponential Autocorrelation Time. The exponential
autocorrelation time is for an observable ¢ is defined as®®

t
Texp. ¢ = lim L (4.60)

1~= —log|pee(t)

This autocorrelation time measures the decay rate of the “slowest mode” of
the system, provided that this mode is not orthogonal to €.

** Strictly speaking, the “lim” should be replaced by “lim sup,” as in (4.4). But in virtually all
practical applications, the limit really exists.
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The critical behavior of 7., . is, in general, different from the
behavior of 7;, . This fact can be seen from the standard dynamic finite-
size-scaling Ansatz for the autocorrelation function p,.(t):

(4.61)

L
Paa(t;L)z]rl"’U;ﬂ( ! ;M>

L

exp. ¢

(Here the dependence on the coupling constants has been suppressed for
notational simplicity.) Summing (4.61) over ¢, we find that

Tint, ¢ ~ Texpl 6 (4.62)
or equivalently,

Sini @ =(1_p('):cxp.(' (463)

Thus, only when p, =0 do we have =i, « =Zep o Y
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Fig. 2. Autocorrelation function p,.(¢) for the 4-state Potts model and L=16 (O) and
L =32 (&), with the abscissa scaled by 7, . The error bars are the square root of the
diagonal terms of the covariance matrix (see Appendix B).
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Here we consider the exponential autocorrelatlon time of the energy &
for the 4-state Potts model and of the observable &, for the X2 and ZF
models. We expect that a similar behavior would be found for &,, for the
X2 and ZF models, and for the squared magnetizations in all three models;
but it did not seem worthwhile to carry out this analysis in detail.

If we plot the estimated autocorrelation function p 4 .(t), we see that it
fits beautifully to a pure exponential for ¢=>7t;, ./2: as examples, see
Figs. 2 and 3, which represent the data for the 4-state Potts model with
L =16, 32 and L =256, respectively. So it makes sense to extract estimates
of 7., « from the tail of the autocorrelation function. More precisely, for
each run we estimated 7., » by fitting log ps4(7) = —A — Bt for the inter-
val 10 S tax; Obviously 7., = 1/B. By studying the goodness of fit
(ie., the y? value and the corresponding confidence level) as a function of
twin and ... we can choose the “best” fit.

This fit is, however, extremely subtle, because the Monte Carlo
estimates of p,.(#) for different ¢ are in general (highly) correlated. The
full covariance matrix C’I, for these random variables can in principle be

State Potts Model Aulocorrelation Function

L/ T )
int,|

Fig. 3. The same as in Fig. 2, for L =256.
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computed using the autocorrelation function itself, at least in the
approximation that neglects the fourth cumulant of the stochastic process:
see Eq. (B.1) in Appendix B. If one assumes for simplicity that the
autocorrelation function is a pure exponential, then the formula simplifies
further: see Eq. (B.2). From this formula we already see that the off-
diagonal terms in C‘,, are comparable in magnitude to the diagonal ones;
therefore, it is unlikely to be sensible to neglect them.

Nevertheless, one may try the crude approximation in which all off-
diagonal terms in C , are dropped and see what happens. Using the self-
consistent procedure explained in detail in Appendix B, we obtained both
an estimate of 7., , (along with its error bar) and the error bars for the
autocorrelation function p,.(¢). For almost all values of ¢, and 7.,,,, we
obtained a perfect fit (confidence level ~100%), with values of the x°
much smaller than the number of degrees of freedom. However, the varia-
tion of the estimates of t.,, « as a function of ¢, and ¢, was much larger

Table XVIll. Values” of 7, , for the 4-State Potts Model, using t,,.,=41,,, ,
(Actually, the Nearest Integer to 47, ), and Various Values of t_;,

L=16, L=32, L =64, L=128, L=256, L=5I2,
i twax =52 Lm =92  to.=164 Lo =320 110 =560 £, =1012

1 12324+ 0.07 20.56+0.10 3521+0.14 65371041 12535+095
312.84, 50 1315.1,90  5411.0,162  7266.9,318 11584, 558
10—39 10—2]6 6x20—l020 2x10-—1296 2x10—2030

057, 0 13434012 2362+021 42994032 NOCONV NOCONV NOCONV
48.84,45 111.17,79  148.32, 142

32% 1% 34%

Tinw & 13694021 2433+034 45014054 100.1+20 NOCONV 334+10
31.24, 38 82.06, 68 13094, 122 193.13, 239 96.08, 758
77% 12% 27% 99% 100%

157, , 13624032 25724061 4599+091 1056+36 1853+83 324+14
25.66,32  57.99,56  10026,101 113.74,199 8647,349 5206, 631
77% 40% 50% 100% 100% 100%

2t 135742055 267+10 51.0+ 1.5 1128+64 232419 329+24
17.98, 25 40.33, 45 91.85, 122 65.00, 159  43.11,279 31.42, 505
84% - 67% 98 % 100 % 100 % 100 %

“The first line of each entry is the estimate of r,,, » and the corresponding error bar; the
second line is the x2 value of the fit and the number of degrees of freedom (DF); the third
line is the confidence level. For each lattice size L we have used as 1, the integer nearest
to the value shown in the first column. Those fits where our self-consistent process dit not
converge are marked NO CONV. The fit for L =512 and ¢,,;, =1 has not been performed,
as it is very memory-consuming and it is expected to be rather poor.

822/85/3-4.4
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than the error bars given by the fit. This indicates that the error bar for the
estimated z.,, » Was not correctly computed. Clearly, the neglect of the off-
diagonal covariances is unjustified, as we already expected on theoretical
grounds.

We therefore redid the fit using the full covariance matrix ¢ ,» again
using the self-consistent procedure described in Appendix B. As before, we
systematically varied ¢, and ¢..,. The dependence of the results on ¢,
is usually slight; but the dependence on 1., is moderately strong. We
report our results in Tables XVIII and XIX for the 4-state Potts model,”
in Tables XX and XXI for the X2 model, and in Tables XXII and XXIII,
for the ZF model. For each model we present two different tables, one with
tax =4 Tin ¢ and the other with ¢, =31, -

In all cases we have a bad fit (level <1%) whenever ¢, €057, 4
(this happens irrespective of the value of ¢,,,,). As an example of such a bad
fit, we show in each the fit with ¢,,;, = 1. Clearly, the energy autocorrelation
function is significantly different from a pure exponential for very small ¢.
However, we obtain reasonable y* values as soon as 7., 2057, «.
indicating that the autocorrelation function becomes very close to a pure
exponential for 1 20.5 15, «.

Table XIX. Values of T1,,, , for the 4-State Potts Model, Using t,.,=37q, «
(More Precisely, the Nearest Integer to That Value)“

L=16, L=32 L =64, L =128, L =256, L=512,
min Imax = 39 Lnax = 69 Lnax =123 I max = 240 fmax = 420 Imax = 759

1 12.31+0.07 2048+0.10 35084014 63244040 11448 +0.93
301.70, 37 12390, 67  5269.0,121  6390.1,238 8987.9,418
3x10—43 3x10—215 2)<]0"0:“ 2x|0—||69 5Xlo—|586

057, 13401012 23444020 4270+032 895410 NO CONV  NO CONV
42.82,32 75.97, 56 107.2, 101 404.50, 199
10% 4% 2% 4x107'¢

Tint & 13.63+0.21 23954034 4428+054 940120 1639+46 329+12
25.55,25 50.84, 45 85.97. 81 156.5, 159 1258, 279 77.82,503
43% 25% 33% 54% 100 % 100 %

s 13504032 24884059 4446+088 970+35 1641+76  314+18
2041, 19 31.04,33 58.50, 60 88.59, 119  63.83,209 43.11, 376
3I7% 56% 53% 98 % 100% 100 %

275 13301054 2510+094 454+14 101.8+6.0 194417 313431
12.18,12 16.30, 22 43.52, 40 57.22,79 36.46, 139 27.20, 250
43% 80% 32% 97% 100 % 100 %

“ Notation as in Table XVIIL

* The results for L = 1024 have not been quoted, as the statistic is rather poor ( ~ 1500 7, 4).
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For the 4-state Potts model (Tables XVIII and XIX) we have rather
stable results for L =16, 32, 64. In most of these fits the confidence level
remains reasonable, so we think we can fully trust these results. However,
for L =128 we begin to have difficulties: the self-consistent procedure does
not always converge, and the results with 7., =471, - sometimes differ
from those with ¢, =37, s by about two standard deviations. Further-
more, for these large lattices we consistently obtain unusually high con-
fidence levels (mostly >99%);. we do not understand why this happens.
For these lattice sizes the troubles seem to be somewhat less severe when
Fmax = 3Tin - S0 we tend to trust better these latter fits when L > 128.

For the X2 model (Tables XX and XXI) both the stability of the
results and the goodness of fit are excellent for L=16 and L=32. For
L =64 we have bad fits when ¢,,,, =47, 4 (level <1%), and somewhat
better ones when f,,, =37, s, (level = 8%). Also for L =128 we obtain
somewhat more stable and consistent results when 1, =37, . For
L =256 the fits are rather poorer; for L =512 they are good, but the results
for the two different values of 1,,,, differ by three standard deviations.

Table XX. Values® of 1,,, s for the X2 Model, Using t,,,, = 4T, &,

L=1s, L=32, L =64, L=128, L =256, L=512,
L min ’max=26 Linax = 37 Tmax =55 rmnx=81 Tonax = 11 Imax = 158

I 634+003 9114005 1329+0.08 1894+0.13 2645+0.21 36864033
47.38,24 150.26,35  265.08, 53 504.72,79  727.28,109  958.10, 156
0.03% 3Ix10718 6x10-% 3x10°% 4x10~% 2x 107!

057 645+004 9621008 1406+0.13 21.03+0.24 3061 +040 NO CONV
2446, 22 24.85, 31 80.84, 47 95.18, 70 152.19, 96

32% T7% 0.2% 2% 2x107%

nL &,

Tint. ., 658+0.07 9784012 14454023 21.74+040 33451070 478+1.2
17.79, 19 20.36, 27 69.09, 40 78.17, 60 194.72, 72 104.12, 117
54% 82% 0.3% 6% 3Ix 10713 90 %

15Ty 5, 6682013 9964021 15234041 23144073 342+12 480+19
15.67, 15 14.73, 22 59.35, 33 58.74, 49 78.72, 68 74.83, 98
40% ° 87% 0.3% 16% 18% 96 %

2t 7, 4 6644002 9774034 16161067 268+14 383+23 48.1+33
941,12 16.30, 22 44.94, 27 37.44, 39 44.37, 54 43.4),78
67% 80 % 2% 54% 82% 100 %

“ Notation as in Table XVIIL.
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Table XXI. Values” of T,,; -, for the X2 Model, Using t,,,, =37, «,
L=16, L =32, L =64, L=128, L =256, L=512,
Imin fmax =19 Imax=28 Lnax =41 lmax=61 Inax =83 Lmax =119
1 6344003 9104005 13.2340.08 18.72+0.13 26.09+021 36.09+033
38.71, 17 141.89,26  21592,39 402.09,59  624.09, 81 826.07, 117
0.2% 6x10~'8 2x10-% 2x10-% 9x10~% 4x10-17
0.5 7y, s 6454004 9.61+008 13944013 2060+024 29.68+040 41984067
16.62, 15 18.96, 22 44,77, 33 40.85, 50 98.71, 68 86.30, 98
34% 65% 8% 82% 0.9% 79%
Tint, €, 6574007 9.75.+0.12 1417+023 2080+0.39 2982+065 43.7+12
10.77, 12 14.96, 18 37.19, 26 28.85, 40 79.36, 54 60.62, 78
55% 66 % 7% 90 % 1% 93%
151004, 6.64+0.13 989+021 14594039 21.09+0.68 31.1+1.1 423+1.8
8.90, 8 9.82,13 28.89, 19 19.59, 29 50.02, 40 46.00, 59
35% 1% 7% 91% 13% 89%
. 6561020 9.63+0.34 15084062 229+12 335421 399428
2.58,5 8.18,8 20.69, 13 1032, 19 27.71, 26 30.36, 39
76% 42% 8% 94% 7% 84%

“ Notation as in Table XVIIL

Table XXIl. Values’ of T,,,, -, for the ZF Model, Using t,,, =47, 4,

L=16, L=32, L =64, L=128, L =256, L=512,
[ Lmax = 38 fmax = 64 tmax = 106 max = 180 Loax =306 1., =476
1 9304005 15115+0.10 24.39+0.19 40.28+0.37 72.64+0.78 1135+1.1
116.93, 36 358.79, 62 667.10, 104 1257.9,178 2192.6,304 4274.1,474
2x107¢ 2x1072  5x107% 8x 10" 10-282 5x 10502
0.5 7, . 9754008 16.64+0.17 2808+036 52254083 NOCONV NOCONV
21.77, 32 58.02, 55 124.13,92 368.20, 156
91 % 36% 1% Ix107"?
Tint. &, 9834012 17.22.+0.29 2981+063 579+1.6 99.71 +3.2 147.14+4.2
21.06, 28 4894, 47 12472, 79 13791, 134 99.73, 229 121.00, 356
82% 40% 0.08% 39% 100 % 100 %
1575, 9854021 17804£049 312111 60.1+£26 1047+56  160.5+7.1
19.65, 23 44.00, 39 85.57, 65 71.20, 111 53.61, 190 58.86, 296
66 % 27% 4% 100% 100% 100 %
2r 1y, s 10.12+0.36 18.18+0.83 359+23 63.5+4.7 114+ 10 163+13
17.26, 18 39.46, 31 46.99, 52 39.02, 89 2590, 152 33.66, 237
51% 14% 67 % 100% 100% 100%

? Notation as in Table XVIIL.
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Finally, for the ZF model (Tables XXII and XXIII) we have good
stability and goodness of fit for L =16 and L = 32. For L =64 the fits are
usually very poor (level <5-8%), but they are generally less bad (and also
more stable) for ¢, =37, ,, than for ¢, =47, - . For L>128 we
also find the result 7, =37, s, , somewhat better than for 7, =47, «.;
again we find inexplicably high confidence levels (often >99%).

From the above discussion we can already see that we have good and
stable fits only for the smaller lattices (L <32 and in some cases L = 64),
where the statistics are better. Apparently, in order to have a decent
estimate of z.,, s we need a run length of at least 6 x 10%z,,, , and possibly
more.

To decide which are the “best” fits we use the following criteria: we
choose the largest interval [7,;., 7., ] such that

(a) The x* value is reasonable (e.g., confidence level =10%).

(b) And there is some consistency (within error bars) with the values
coming from “nearby” choices of ¢, and ¢ ...

Table XXIll. Values® of 1,,, . for the ZF Model, Using t,,,, =37, «.

L=16, - L=32, L =64, L=128, L =256, L=512,
{min Imax =28 tmax =48 Lax =19 Linax =135 frax =229 1na =357
1 9294005 15104010 2414+40.19 38934037 67494079 1075+1.1
99.77, 26 327.13, 46 579.33, 77 10209, 133 1692.7, 227 3642.5, 355
10— Sx10~# Sx10-" g x10-1%7 3Ix 10732 1037
0575, 972+£008 1655+0.17 27541036 5057+086 NOCONV 1395126
9.15,22 41.27,39 81.69, 65 314.16, 111 21348, 296
99 % 37% 8% 3Ix10-% 100 %

Tos, 978+012 1701+029 28174060 SL7+15 939+35  137.6+42
8.74, 18 342931  6980,52  8187,89  91.88,152  101.06,237
97% 31% 5% 69% 100% 100%

1Sz s, 972021 17364048 288+1.1 51.8+25 939+58 1480+8.0
737,13 29.87,23 53.00, 38 47.82, 66 43.53,113 50.63,177

88%:* 15% 5% 96 % 100% 100 %
e, ., 9841035 172414079 316420 523443 100+ 10 145+ 13

5.54,8 2692, 15 29.63, 25 31.20, 44 24.34,75 32.14,118

70% 3% 24% 93% 100% 100%

? Notation as in Table XVIIIL.
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Table XXIV. Ratios Ti,, s/Texp, s for the Three Models Considered
in This Paper*

4-state Potts model ZF model X2 model

L {omin foax Ty el Texp s 1 onin foux T e/ Texp. o, T min Imax  Tinns,/ Toxp. €0

16 Tis s 0961003 3T s s, 0971002 i, 6 Hins, 0991002

3 Tins s 0951004 i g s, 0961003 i, s, i ., 0974002

64 T s s 0921002 it £, 3Tins, 0961004 $Ti s, i s, 098+003
128 Tis 3T s 0841004 Tint g, ITin«, 0871006 1T 5, IMis, 0991003
256 Tins 3T s 0871005 Tin. s, 3T s, 0811007 $Tim & s, 0941006
512 T s 3Tims 0771006 1t 5. s, 0851005 i £, 3Tinns, 0941005

“ For each lattice size L we give the ratio and the interval [¢,,, fm..] used for its computa-
tion.

In Table XXIV we present what we consider to be the “best” fits for
each model and each lattice size L. We include the interval {7, f...] and
the ratio 7, s/T.xp 5. The error bar on this ratio was computed using the
triangle inequality, as we do not know the covariance between our
estimates of 7, , and 1., ,. We think these estimates are reasonably
reliable for L =16 and 32, somewhat reliable for L =64, and possibly
unreliable for L > 128.

From Table XXIV we see that for each model, the values of the ratio
Tini. 6 /Texp. & ar€ more or less constant when L < 64. If we fit the ratios for
16 < L <64 to a constant, we obtain reasonable fits for the three models:
Tint, & /Texp. s = 0.936 £ 0.015 for the 4-state Potts model (x*>=1.50, 2 DF,
level =47%), Tin g5./Texp. 5, =0.966 +0.015 for the ZF model (3*=0.10,
2 DF, level=95%) and 7, s, /Texp. s, =0.980+0.013 for the ¥* model
(x*=0.50, 2 DF, level =78%). However, for the 4-state Potts and ZF
models, this ratio seems to decrease when L > 128. Now, these points are
precisely those where we had trouble obtaining the value of 7., 4. so this
decrease might be due simply to a poor determination of the exponential
autocorrelation time; and it is in any case only about two standard devia-
tions.”® On the other hand, this decrease might indicate that 7, s /Teyp & 1S
tending to zero as L — oo; in this case the dynamic critical exponents z,;,
and -, » would be different (the latter would be larger), and the exponent
Ps in (4.61) would be strictly positive.

*1f we fit all the data (16 < L <512), we get the following ratios: 7, 6 /Texp. s =0.914 +£0.013
for the 4-state Potts model {y* =13.84, 5 DF, level =2%) and t,, solTexp. 5, = 0945 £0.014
for the ZF model (y*>=10.84, 5 DF, level =5%). These confidence levels on the order or
of 5% are as expected from the two-standard-deviation discrepancies.
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The result for the X2 model, by contrast, is completely consistent with
a constant ratio Tiy g,/Texp, 5,» indicating that p, =0. This fit to a con-
stant, using all the data (16 < L <512), gives

Tin b (%9)-0.976 +0.011 (4.64)

Texp. Sw

with y?>=2.14 (5 DF, level = 83%)).

Due to the ambiguities in the determination of t.,, » for L > 128 in all
the models, we are unable to come to any definitive conclusion on whether
Tiow & = Zexp, & - But it does seem likely.

5. CONCLUSIONS

We have performed a high-precision Monte Carlo study of the sym-
metric Ashkin-Teller model at several points on the self-dual (critical)
curve, using a Swendsen—-Wang-type algorithm. We have considered both
the static behavior of the models (known exactly) and the dynamic
behavior of the algorithm.

We have had great difficulties in obtaining the correct leading
behavior whenever this is not simply a power law plus additive power-law
corrections. These difficulties occurred both for static quantities (specific
heat in the Ising and 4-state Potts models) and for dynamic quantities
(autocorrelation times in all models). Unless we have some theoretical
input, it is almost impossible to distinguish between power-law and
logarithmic behaviors when the range of lattice sizes L is not extremely
large (in our case, 16 <L <1024).

This issue makes it very problematic to tell whether the Li-Sokal
bound (1.1)/(1.2) is sharp or not. Qur results seem to indicate that there
are only two likely scenarios: the Li-Sokal bound fails to be sharp either
by a small power (ie., Ty, s/Cyr~AL” with 0.05<p <0.12) or by only a
logarithm (e.g., 7, »/Cy=~ A+ Blog L). Either one of these scenarios is
consistent with our data at all four points on the AT self-dual curve. Larger
lattices and much better statistics will be needed to distinguish between them.

We have also presented a new method for estimating the exponential
autocorrelation time, which takes into account the full covariance matrix
for the sample autocorrelation function. To do so is essential to obtain
reliable results, as the values of the sample autocorrelation function are
strongly positively correlated. The quality of the estimates of 7., «
depends strongly on the accuracy of the available data: we seem to
get reliable estimates of 7., » only when the run length is at least
~600007;,, (-
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APPENDIX A. PROOF OF LI-SOKAL BOUND FOR THE
DIRECT ASHKIN-TELLER ALGORITHM

We can easily extend the proof of the Li-Sokal bound for the g¢-state
Potts models'® to the direct algorithm for the AT model (defined in Sec-
tion 3.1). Also in this latter case, the transition matrix can be written as a
product

PSW=PbondPspin (Al)

where Py.q (the update of the bond variables) and P, (the update of the
spin variables) are given by the conditional expectation operators
E(-| {0, }) and E(-| {m, n}), respectively.

As in ref. 9 we are going to compute explicitly the autocorrelation
function at time lags 0 and 1 for several bond densities. Then, using some
general properties of reversible Markov chains, we will deduce lower
bounds for the autocorrelation times t;, , (for certain observables A)
and t.,,. These will in turn imply lower bounds on the dynamic critical
exponents zi,, 4 and z.,.

Let us consider the bond occupations™'

M=) m,, (A.2a)
<Xy

N=3 n, (A.2b)
(x>

=Y myn,, (A.2¢c)
{xvd

We will follow the notation of ref. 9 and henceforth write the Kronecker
deltas for a bond b=<{xy) as J,,=6, , and d,=7,_ ...

From (3.6) we can read off the expectation value of the bond variable
m,, conditional on the spin configuration {o, t}: it is

E(mbl{a!t})=q16m,=(pl+p2)6ab (A3)

where q,, p, and p, are the probabilities appearing in steps la and 1b of
the direct algorithm (Section 3.1).*> The important fact here is that

3 Do not confuse this .# with a magnetization!

32In this appendix we are assuming that the system is homogeneous, i.., that the couplings
J, J', and K do not vary from bond to bond. An inhomogeneous system can be treated by
an obvious generalization.
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g, = p, + p,: this means that E(m,| {g, t}) does not depend on the t con-
figuration. Likewise we have

E(nbl{a, r})=r161b=(pl+p3)6rh (A4a)
E(m,n,|{o,1t})=p,6,,0,, (A.4b)

The other conditional probabilities we need are

E(m,m, |{ ={ 1; Zii: (A.5a)
E(n,n,|{ ={r 5"”5”” if. lb)il;: (A.5b)
E(myny|{ ={(117112,h o I? Ziz (A.5¢)
E(mynymy | { ={’;‘q“5 190y i? Zil;: (A.5d)
E(myn,m,|{ ={ 'r15 Fuda i? Zi[;: (A.5e)
S T

These simply reflect the fact that in step 1 each bond is updated independ-
ently of each other bond.

From (A.3) and (A.5a) it is easy to compute the mean values {.#)
and (.#*), and hence var(#)={M>y —{ M

M =2V%(1 +E,) (A.6a)

CH?y =L(E2 + GV +2E,) + (1 g )V +E,) (As6b)

q,(1 —q,)

var(:///)sz[ﬁ Crt.oo+ 15—

4 (1 +E,,)] (A.6c)
where E, = (1/2V){&,) is one of the energies defined in Section 4.2, and
Cy ,o=(1/2V)var(é,) is the corresponding specific heat. The unnor-
malized autocorrelation function of .# at time lag 0 is precisely
C ;.4(0)=var(#).
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The corresponding autocorrelation function at time lag 1 is given by

C .y a1y = MO (1YY — (MY =var(E(M | {oT})) = var( Py g )

(A7)
Now, the energylike operator Py,,q.# is equal to
Poonatl = E(l | {oT}) ="2—’(2V+ &) (A8)
This implies that
Cora=Tvarg)=2vlic,,, (A9)

Thus, the normalized autocorrelation function for the operator .# at time
lag 1 is given by

_C.//.//(l)_

2(1—q (1 +E,
Punl)= 1 (1 —g,X )

Cuunl0)  qChopt+2(1—q)1+E,)

(A.10)

Note now that when we approach any point on the critical curve, the
quantity ¢, = —e *** remains positive and less than 1 [ie,
4, = q1. i €(0, 1)] while the energy E, remains greater than —1 [ie.,
E,—>E, > —1]. It follows that

const

Puall)Z1— (A.11)

H. oo

uniformly in a neighborhood of that critical point.

The rest of the argument given in ref. 9 can now be transcribed
verbatim. The correlation functions of .# under Pg,, are the same as under
the positive-semidefinite self-adjoint operator Pgw = Pyin Poona Pspin- This
fact implies that we have a spectral representation

1
p.,u,(f)=f0 A dv() (A.12)

with a positive measure dv. From this equation we conclude that

PA//.//(")ZPA//.//(I)M (A.13)

Using the definition (4.3) of the integrated autocorrelation time and the
definition (4.4) of the exponential autocorrelation time, we arrive at the
following bounds:
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L1+p 44(1)

) Z5
Tint, .« 21 —/)4//‘//(1)

2constx Cy ., (A.14a)

—— >=constx Cpy s A.14b
log p 4.u(1) i ( )

Texp N4 /

Let us now assume that the autocorrelation times diverge (for a finite
system of size L at criticality) as L3 and L* -, respectively, and that
the matrix element C,, ., of the specific-heat matrix diverges as L*". We
then conclude that

Zint, tts Zoxp. .t Z

= | R

(A.15)

which is the result of ref. 9.

The only way that the bound (A.15) could fail is in case the matrix ele-
ment C ., fails to diverge as L*" (e.g., by diverging with a smaller power
or by being bounded). Now, the matrix C,, does have an exactly marginal
eigenvalue everywhere on the self-dual curve (2.8) of the symmetric AT
model, so that the component of C, tangent to this self-dual curve
(namely, Cy i) is bounded as L — c0.** However, this marginal direction
is never exactly o, so the preceding proof does in fact always succeed: Cy; .
does always diverge as L*". Nevertheless, some extra generality—as well as
slightly sharper constants in the lower bound (A.14b) on 7.,—can be
obtained by choosing in place of .# a more general bond observable

X =cydl + s N +¢30 (A.16)

where ¢,, ¢,, and ¢; are arbitrary real constants. This case trivially includes
the preceding one. Using the techniques described above and after some
algebra, we arrive at the following results

(> = 2v{“2'(1+E)+""]‘(1+E) (1+ET)} (A.17a)
Cra(0)=2V(Ch pppuy Prs r + E 1) (A.17b)
Corw(1)=2VCh_ pyoyx Pronat (A.17c)

E,

Par(l)=1— (A.17d)

Cu. Pouna 2 Prorat + E

3 More generally, in the nonsymmetric AT model on the self-dual manifold (2.7), there are
fwo marginal eigenvalues, corresponding to the two tangent vectors to (2.7).
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where we have defined the following quantities:

E=E. +E,+E, (A.18a)
Pbond'%'=E(3r| {UT})

ne  63p qdi1Cz2  Capy 3Py
=2 3 é, é,
<2+4>‘5‘+<2+4>”+4‘”

2¢,ri+2c5,q, + c3py

+2V 4' - (A.18b)
Clt, Prona 4 Prong & = 21Vvar(Pbond%“) (A.18c)
B, =Snmr) g gy saza) g
2 2
+1+ LL3pdl—p)+2c,02(p) —43)
+2¢c,cap (1 —r))+2¢5¢5p(1 —q1) ] (A.18d)

and the rest of the observable quantities are defined in Section 4.

Using the parameters (c,, c,, c;), we can choose the energylike
operator Py, % in such a way that it contains a nonzero projection on the
most divergent eigenvector of the matrix C,,. This is always possible, as we
have enough freedom. On the other hand, the term E, should be bounded
from below by a strictly positive number.

Let us analyze an interesting particular case: the symmetric model
(r; =¢,) on the self-dual curve. The natural choice is ¢, =¢, and the pre-
vious formulas can be simplified to

Pbond.9”=<c3;' >£w+c~‘f'@@,,,+2V<c,q,+c-‘f‘> (A.192)

E,=ciqi(1=q )1 +E,)

1+
" T

[eipi(1=p)+deiespi(l —q,) +2ei(pr—g7)]
(A.19b)

We can choose any ratio c;/c; such that P, 4% is not a multiple of
Zin =6, +a&,., where a is the parameter defined in (4.26). This means
that on the self-dual curve the ratio ¢,/¢, could be anything different from
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—4sinh 2J. In particular, we can make the choice (c,, ¢;) = (1, 0), leading
to Pyooa¥ =24q,6,, + const and to the bound

E,

rr(1)=1— (A.20a

Pl qICH,ww+EJI” )
= P—aq;
Ef=q,(1—q1)(1+Ew)+T'(1+ET) (A.20b)

Let us now restrict attention to the part of the self-dual curve for which the
specific heat is divergent, namely the interval between the decoupled Ising
point (DIs) and the 4-state Potts point (P). In this interval we have J,
K >0, so Griffith first inequality implies that the energies £, and E,, are
>0 (and hence so is E;). Moreover, both ¢, and p,—g¢? are strictly
positive on this interval. Since the specific heat Cy ., is divergent
everywhere on this interval, the proof of the bound (1.2) is complete.

APPENDIX B. FITTING (HIGHLY CORRELATED)
AUTOCORRELATION FUNCTIONS

Let 5(t) be the normalized sample autocorrelation function for some
particular observable, measured in a Monte Carlo run of length N. These
measured values { ﬁ(t)}f";_‘( ~—1, are of course random variables; as such
they have a covariance matrix C‘/,, which is given by a standard formula
from time-series analysis:*¥

cov[ A(r), p(s) ]

1 + oC

=N Y. L[o(m) plm+r—s)+p(m+s) plm—r)+2p(r) p(s) p(m)*

m= —og

—2p(r) p(m) p(m—s) —2p(s) p(m) p(m—r}] + O <%> (B.1)
where {p(t)} are the true values of the autocorrelation function. This
formula is valid in the limit ¥ — oo, provided that the stochastic process is
Gaussian. [If the process is not Gaussian, then we have to include also
terms proportional to the fourth cumulant x4(m, r, r —s).] In our case the
stochastic process is of course not Gaussian, but we may hope that it is
“not too far from Gaussian.” So let us for simplicity take formula (B.1) as
correct.
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The qualitative import of (B.]) can be understood by examining the
special case of a pure exponential decay p(t)=e~"/*. In this case (B.1)
reduces to

A 2 ]' —|r—ul/T 1 +e"2/7
COV[p(r),p(s)]=N{e sy (Ir—5|+1—ﬁ>

_ p—lr+syt 1 +e—2/r>:l (L)
e <r+s+———l_e_2/, 4+ 0 e (B.2)
We thus see that the off-diagonal terms in C’l, (ie., r#5) are comparable
in magnitude to the diagonal ones (r=s). In other words, the sample
autocorrelations p(¢) for different time lags ¢ are strongly positively
correlated, and any valid analysis method must take proper account of this
correlation.™

Our Ansatz for the autocorrelation function p(t) will be the following:

_ (A1) for 0<t<tn
plt)= {Ae"”’m for 1=t (B.3a)
pl)=p(—1) (B.3b)

where p(t) is the autocorrelation function at time lag ¢ measured in the
Monte Carlo simulation, and t.,, will be chosen by least-squares fitting
(see below); here ¢,.;, is some chosen cut point, to take account of the fact
that the behavior of p(¢) for small t need not be exponential. Now, for each
Inin WE can compute explicitly the sums appearing in (B.1) when p(r) is
given by (B.3). Indeed, all the terms in (B.1) can be written in terms of p(¢)
and its convolution

+ o

wsy= Y ptm) plm—s) {B.4)
The sum (B.4) can be split into two pieces: one piece contains only p(¢)’s
with r>1 .., and the other piece contains the rest. The first piece can be
summed exactly, giving the result

8+ Imin— 1
us)= 3 plm)plm—s)
m=1
8+ fmin— 1 € —(21min + 5/ Texp

+ ) plm)p(m—s)+24°

m=y

(B.5)

1 _ e—z/fexp

* A similar problem arises in fitting the spatial correlation function to an asymptotic
exponential decay in order to extract the mass gap.”®”
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Thus, given {j(1)}, tmin. 4, and 7., we can compute the covariance
matrix C' given by (B.1). With this matrix, we can perform the standard
weighted least-squares fit®® to logp(t)=a+bt for the interval
Imin <1 <!, and obtain new estimates for A =e“ and 7., = —1/b. We
iterate this process until we reach a fixed point for which the input and out-
put values of 4 and t,,, are equal. In practice, we initialized this self-con-
sistent process by supposing that p(t) =exp(—|¢|/z'%)) with

exp

2t —1
(0) __ —1 int
Texp = —l0Og ——Zfim 1 (B.6)

Here the value of t;, 1s of course our estimate from the Monte Carlo
simulation, using the usual self-consistent truncation window of width 67,
(ref. 54, Appendix C). We followed this procedure both for the fits with the
full covariance matrix and for those with only a diagonal covariance
matrix.

This procedure was implemented using Mathematica, which allowed
us to control accurately the numerical precision of the calculation. This is
especially important when inverting the full covariance matrix, as in some
cases we obtained nearly singular matrices. In practice, this method con-
verges well for the smaller lattices (the number of iterations needed is
usually <10). However, when the data are sufficiently poor (run length
< 60000 t,,,), we noticed some cases of cyclic behavior instead of con-
vergence to a single fixed point. This appears to happen when, due to a
statistical fluctuation, the sample autocorrelation function A(t) has a sharp
bend somewhere in its tail.
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NOTE ADDED IN PROOF

After the completion of this work we have realized that the correct
leading term for the susceptibility of the critical 4-state Potts model is not
¥~ L7 but rather

x~L"log='® L

This result follows by using the techniques of ref. 59; the details will be pub-
lished elsewhere.®® This logarithm might explain the fact that our Monte
Carlo estimate (4.27) is slightly below the expected result 7/4. A more
detailed numerical test of these logarithmic factors will be published else-
where. 5%

REFERENCES

1. A. D. Sokal, Monte Carlo methods in statistical mechanics: Foundations and new algo-
rithms, Cours de Troisitme Cycle de la Physique en Suisse Romande, Lausanne,
Switzerland (June 1989).

. S. L. Adler, Nucl. Phys. B (Proc. Suppl.) 9:437 (1989).

. U. Wolff, Nucl. Phys. B (Proc. Suppl.) 17:93 {1990).

. A. D. Sokal, Nucl. Phys. B (Proc. Suppl.) 20:55 (1991).

. R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58:86 (1987).

. C. F. Baillie and P. D. Coddington, Phys. Rev. B 43:10617 (1991).

. C. F. Baillie and P. D. Coddington, Phys. Rev. Lett. 68:962 (1992); and private com-
munication.

8. D. W. Heermann and A. N. Burkitt, Physica A 162:210 (1990).
9. X.-J. Li and A. D. Sokal, Phys. Rev. Lert. 63:827 {1989).

10. W. Klein, T. Ray and P. Tamayo, Phys. Rev. Lett. 63:827 (1989).

11. T. Ray, P. Tamayo, and W. Klein, Phys. Rev. A 39, 5949 (1989).

12. U. Wolff, Phys. Rev. Letr. 62:361 (1989).

13. P. Tamayo, R. C. Brower, and W. Klein, J. Star. Phys. 58:1083 (1990).

14. S. Alexander, Phys. Lett. A 54:353 (1975).

15. E. Domany and E. K. Riedel, J. Appl. Phys. 49:1315 (1978).

16. M. Nauenberg and D. J. Scalapino, Phys. Rev. Lett. 44:837 (1980).

17. J. L. Cardy, M. Nauenberg, and D. J. Scalapino, Phys. Rev. B 22:2560 (1980).

18. J. L. Black and V. J. Emery, Phys. Rev. B 23:429 (1981).

19. U. Wolfl, Phys. Lett. B 228:379 (1989).

20. J.-S. Wang, Physica A 164:240 (1990).

21. J. C. Le Guillou and J. Zinn-Justin, J. Phys. France 50:1365 (1989).

22. B. G. Nickel, Physica A 177:189 (1991).

23. ). Ashkin and J. Teller, Phys. Rev. 64:178 (1943).

24. S. Wiseman and E. Domany, Phys. Rev. E 48:4080 (1993).

25. L. Laanait, N. Masaif, and J. Ruiz, J. Stat. Phys. 72:721 (1993).

26. R. V. Ditzian, J. R. Banavar, G. S. Grest, and L. P. Kadanof, Phys. Rev. B 22:2542 (1980).

27. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, New York,

1982).
28. H. J. F. Knops, J. Phys. A: Math. Gen. 8:1508 (1975).
29. S. J. Ferreira and A. D. Sokal, Phys. Rev. B 51:6727 (1995).

W

~ O\ L b



Swendsen-Wang-Type Algorithm for Ashkin-Teller Model 361

30.
KIN
32
33
34
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.

49.

50.

52.
53.
54.
55.
56.
57.

58.
59.
60.

S1.

. Y. Wu and Y. K. Wang, J. Math. Phys. 17:439 (1976).

. Y. Wu, J. Math. Phys. 18:611 (1977).

. van Enter, R. Fernandez, and A. D. Sokal, unpublished.

. J. Baxter, Proc. Roy. Soc. Lond. A 383:43 (1982).

. Lenard, cited in E. H. Lieb, Phys. Rev. 162:162 (1967), pp. 169, 170.

. J. Baxter, J. Math. Phys. 11:3116 (1970).

. P. Kadanoff and A. C. Brown, Ann. Phys. (NY) 121:318 (1979).

. Pfister, Conunun. Math. Phys. 29:113 (1982).

. M. Maillard, P. Rujan, and T. T. Truong, J. Phys. A: Math. Gen. 18:3399 (1985).

. Benyoussef, L. Laanait, and M. Loulidi, J. Srat. Phys. 74:1185 (1994).

D. van Enter, R. Fernandez, and A. D. Sokal, J. Star. Phys. 72:879 (1993).

M. den Nijs, J. Phys A. Math. Gen. 12:1857 (1979).

F. Knops, Ann. Phys. (NY) 128:448 (1980).

leur, J. Stat. Phys. 50:475 (1988).

Yang, Nucl. Phys. B 285[FS19]:183 (1987).

Zamolodchikov and V. A. Fateev, Sov. Phys. JETP 62:215 (1985).

V. Temperley and S. Ashley, Proc. Roy. Soc. Lond. A 265:371 (1979).

Edwards and A. D. Sokal, Phys. Rev. D 38:2009 (1988).

G. Mana, T. Mendes, A. Pelissetto, and A. D. Sokal, Nucl. Phys. B (Proc. Suppl.) 47:796
(1996).

T. Mendes, A. Pelissetto, and A. D. Sokal, Multi-grid Monte Carlo via XY embedding 1.
General theory and two-dimensional O( N)-symmetric nonlinear o-models, hep-lat/960401 5.
R. G. Edwards and A. D. Sokal, Phys. Rev. D 40:1374 (1989).

S. Caracciolo, R. G. Edwards, A. Pelissetto, and A. D. Sokal, Nucl. Phys. B 403:475
(1993).

T. W. Anderson, The Statistical Analysis of Time Series (Wiley, New York, 1971).

M. B. Priestley, Spectral Analysis and Time Series (Academic Press, London, 1981).

N. Madras and A. D. Sokal, J. Star. Phys. 50:109 (1988).

A. E. Ferdinand and M. E. Fisher, Phys. Rev. 185:832 (1969).

C. J. Hamer, M. T. Batchelor, and M. N. Barber, J. Srat. Phys. 52:679 (1988).

D. Toussaint, In From Actions to Answers, T. DeGrand and D. Toussaint, eds. (World
Scientific, Singapore, 1990).

S. D. Silvey, Statistical Inference (Chapman and Hall, London, 1975), Chapter 3

J. L. Cardy, M. Nauenberg, and D. J. Scalapino, Phys. Rer. B 22:2560 (1980).

J. Salas and A. D. Sokal, Finite-size scaling and logarithmic corrections in the two-dimen-
sional 4-state Potts model, in preparation.

7°:E>V’:::z>>'-0!—=u>=c>-n-n

. C
P
L
. Sa
-K.
. B.
. N.
. G.

822/85/3-4-3



